# Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch dots1 model.""" import gc import unittest import pytest from transformers import AutoTokenizer, Dots1Config, is_torch_available from transformers.testing_utils import ( backend_empty_cache, cleanup, require_flash_attn, require_torch, require_torch_accelerator, require_torch_gpu, slow, torch_device, ) from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester if is_torch_available(): import torch from transformers import ( Dots1ForCausalLM, Dots1Model, ) class Dots1ModelTester(CausalLMModelTester): config_class = Dots1Config if is_torch_available(): base_model_class = Dots1Model causal_lm_class = Dots1ForCausalLM def __init__( self, parent, n_routed_experts=8, n_shared_experts=1, n_group=1, topk_group=1, num_experts_per_tok=8, ): super().__init__(parent=parent, num_experts_per_tok=num_experts_per_tok) self.n_routed_experts = n_routed_experts self.n_shared_experts = n_shared_experts self.n_group = n_group self.topk_group = topk_group @require_torch class Dots1ModelTest(CausalLMModelTest, unittest.TestCase): all_model_classes = ( ( Dots1Model, Dots1ForCausalLM, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": Dots1Model, "text-generation": Dots1ForCausalLM, } if is_torch_available() else {} ) test_headmasking = False test_pruning = False model_tester_class = Dots1ModelTester @unittest.skip("dots.llm1's moe is not compatible `token_indices, weight_indices = torch.where(mask)`.") def test_generate_with_static_cache(self): pass @unittest.skip("dots.llm1's moe is not compatible `token_indices, weight_indices = torch.where(mask)`.") def test_generate_compilation_all_outputs(self): pass @unittest.skip("dots.llm1's moe is not compatible `token_indices, weight_indices = torch.where(mask)`") def test_generate_compile_model_forward(self): pass @unittest.skip("dots.llm1's moe is not compatible token_indices, weight_indices = torch.where(mask).") def test_generate_from_inputs_embeds_with_static_cache(self): pass @require_flash_attn @require_torch_gpu @pytest.mark.flash_attn_test @slow def test_flash_attn_2_inference_equivalence_right_padding(self): self.skipTest(reason="dots.llm1 flash attention does not support right padding") @require_torch_accelerator class Dots1IntegrationTest(unittest.TestCase): # This variable is used to determine which CUDA device are we using for our runners (A10 or T4) # Depending on the hardware we get different logits / generations cuda_compute_capability_major_version = None @classmethod def setUpClass(cls): if is_torch_available() and torch.cuda.is_available(): # 8 is for A100 / A10 and 7 for T4 cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0] def tearDown(self): # See LlamaIntegrationTest.tearDown(). Can be removed once LlamaIntegrationTest.tearDown() is removed. cleanup(torch_device, gc_collect=False) @slow def test_model_15b_a2b_generation(self): EXPECTED_TEXT_COMPLETION = ( """To be or not to be, that is the question:\nWhether 'tis nobler in the mind to suffer\nThe""" ) prompt = "To be or not to" tokenizer = AutoTokenizer.from_pretrained("redmoe-ai-v1/dots.llm1.test", use_fast=False) model = Dots1ForCausalLM.from_pretrained("redmoe-ai-v1/dots.llm1.test", device_map="auto") input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device) # greedy generation outputs generated_ids = model.generate(input_ids, max_new_tokens=20, do_sample=False) text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) self.assertEqual(EXPECTED_TEXT_COMPLETION, text) del model backend_empty_cache(torch_device) gc.collect()