transformers/tests/models/idefics/test_processor_idefics.py
Stas Bekman 6c811a322f
new model: IDEFICS via HuggingFaceM4 (#24796)
* rename

* restore

* mappings

* unedited tests+docs

* docs

* fixes

* fix auto-sync breakage

* cleanup

* wip

* wip

* add fetch_images

* remove einops dependency

* update

* fix

* fix

* fix

* fix

* fix

* re-add

* add batching

* rework

* fix

* improve

* add Leo as I am extending his work

* cleanup

* fix

* cleanup

* slow-test

* fix

* fix

* fixes

* deal with warning

* rename modified llama classes

* rework fetch_images

* alternative implementation

* cleanup

* strict version

* cleanup

* [`IDEFICS`] Fix idefics ci (#25056)

* Fix IDEFICS CI

* fix test file

* fixup

* some changes to make tests pass

* fix

* fixup

* Update src/transformers/models/idefics/configuration_idefics.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* remove compat checks

* style

* explain that Idefics is not for training from scratch

* require pt>=2.0

* fix idefics vision config (#25092)

* fix idefics vision config

* fixup

* clean

* Update src/transformers/models/idefics/configuration_idefics.py

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* cleanup

* style

* cleanup

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* upcase

* sequence of images

* handle the case with no images

* Update src/transformers/image_processing_utils.py

Co-authored-by: Victor SANH <victorsanh@gmail.com>

* support pure lm take 2

* support tokenizer options

* parameterize num_channels

* fix upcase

* s|IdeficsForCausalLM|IdeficsForVisionText2Text|g

* manual to one line

* addressing review

* unbreak

* remove clip dependency

* fix test

* consistency

* PIL import

* Idefics prefix

* Idefics prefix

* hack to make tests work

* style

* fix

* fix

* revert

* try/finally

* cleanup

* clean up

* move

* [`IDEFICS`] Fix idefics config refactor (#25149)

* refactor config

* nuke init weights

* more refactor

* oops

* remove visual question answering pipeline support

* Update src/transformers/models/idefics/clip.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Update src/transformers/models/idefics/modeling_idefics.py

* cleanup

* mv clip.py vision.py

* tidyup

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas@stason.org>

* fix

* license

* condition on pt

* fix

* style

* fix

* rm torchvision dependency, allow custom transforms

* address review

* rework device arg

* add_eos_token

* s/transforms/transform/

* fix top level imports

* fix return value

* cleanup

* cleanup

* fix

* style

* license

* license

* Update src/transformers/models/idefics/image_processing_idefics.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add a wrapper to freeze vision layears

* tidyup

* use the correct std/mean settings

* parameterize values from config

* add tests/models/idefics/test_image_processing_idefics.py

* add test_processor_idefics.py

* cleanup

* cleanups

* fix

* fix

* move to the right group

* style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add perceiver config

* reset

* missing arg docs

* Apply suggestions from code review

Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com>

* address review comments

* inject automatic end of utterance tokens (#25218)

* inject automatic end of utterance tokens

* fix

* fix

* fix

* rework to not use the config

* not end_of_utterance_token at the end

* Update src/transformers/models/idefics/processing_idefics.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* address review

* Apply suggestions from code review

Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>

* Update src/transformers/image_processing_utils.py

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>

* [`Idefics`] add image_embeddings option in generate-related methods (#25442)

* add image_embeddings option in generate-related methods

* style

* rename image_embeddings and allow perceiver embeddings precomputation

* compute embeddings within generate

* make is_encoder_decoder= True the default in config

* nested if else fix

* better triple check

* switch if elif order for pixel values / img embeds

* update model_kwargs perceiver only at the end

* use _prepare_model_inputs instead of encoder_decoder logic

* fix comment typo

* fix config default for is_encoder_decoder

* style

* add typehints

* precompute in forward

* doc builder

* style

* pop instead of get image hidden states

* Trigger CI

* Update src/transformers/models/idefics/modeling_idefics.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/idefics/modeling_idefics.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix * + indentation + style

* simplify a bit the use_resampler logic using comments

* update diocstrings

* Trigger CI

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix rebase changes

* unbreak #25237 - to be fixed in follow up PRs

* is_composition = False

* no longer needed

---------

Co-authored-by: leot13 <leo.tronchon@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Victor SANH <victorsanh@gmail.com>
Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-08-18 14:12:28 -07:00

155 lines
5.3 KiB
Python

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from transformers.testing_utils import TestCasePlus, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
IdeficsImageProcessor,
IdeficsProcessor,
LlamaTokenizerFast,
PreTrainedTokenizerFast,
)
@require_torch
@require_vision
class IdeficsProcessorTest(TestCasePlus):
def setUp(self):
super().setUp()
self.checkpoint_path = self.get_auto_remove_tmp_dir()
image_processor = IdeficsImageProcessor()
tokenizer = LlamaTokenizerFast.from_pretrained("HuggingFaceM4/tiny-random-idefics")
processor = IdeficsProcessor(image_processor, tokenizer)
processor.save_pretrained(self.checkpoint_path)
self.input_keys = ["pixel_values", "input_ids", "attention_mask", "image_attention_mask"]
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.checkpoint_path, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.checkpoint_path, **kwargs).image_processor
def prepare_prompts(self):
"""This function prepares a list of PIL images"""
num_images = 2
images = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8) for x in range(num_images)]
images = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in images]
# print([type(x) for x in images])
# die
prompts = [
# text and 1 image
[
"User:",
images[0],
"Describe this image.\nAssistant:",
],
# text and images
[
"User:",
images[0],
"Describe this image.\nAssistant: An image of two dogs.\n",
"User:",
images[1],
"Describe this image.\nAssistant:",
],
# only text
[
"User:",
"Describe this image.\nAssistant: An image of two kittens.\n",
"User:",
"Describe this image.\nAssistant:",
],
# only images
[
images[0],
images[1],
],
]
return prompts
def test_save_load_pretrained_additional_features(self):
processor = IdeficsProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(self.checkpoint_path)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = IdeficsProcessor.from_pretrained(
self.checkpoint_path, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, IdeficsImageProcessor)
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
prompts = self.prepare_prompts()
# test that all prompts succeeded
input_processor = processor(prompts, return_tensors="pt")
for key in self.input_keys:
assert torch.is_tensor(input_processor[key])
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
prompts = self.prepare_prompts()
inputs = processor(prompts)
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertSetEqual(set(inputs.keys()), set(self.input_keys))