mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-15 10:38:23 +06:00

* rename * restore * mappings * unedited tests+docs * docs * fixes * fix auto-sync breakage * cleanup * wip * wip * add fetch_images * remove einops dependency * update * fix * fix * fix * fix * fix * re-add * add batching * rework * fix * improve * add Leo as I am extending his work * cleanup * fix * cleanup * slow-test * fix * fix * fixes * deal with warning * rename modified llama classes * rework fetch_images * alternative implementation * cleanup * strict version * cleanup * [`IDEFICS`] Fix idefics ci (#25056) * Fix IDEFICS CI * fix test file * fixup * some changes to make tests pass * fix * fixup * Update src/transformers/models/idefics/configuration_idefics.py Co-authored-by: Stas Bekman <stas00@users.noreply.github.com> --------- Co-authored-by: Stas Bekman <stas00@users.noreply.github.com> * remove compat checks * style * explain that Idefics is not for training from scratch * require pt>=2.0 * fix idefics vision config (#25092) * fix idefics vision config * fixup * clean * Update src/transformers/models/idefics/configuration_idefics.py --------- Co-authored-by: Stas Bekman <stas00@users.noreply.github.com> * cleanup * style * cleanup * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * upcase * sequence of images * handle the case with no images * Update src/transformers/image_processing_utils.py Co-authored-by: Victor SANH <victorsanh@gmail.com> * support pure lm take 2 * support tokenizer options * parameterize num_channels * fix upcase * s|IdeficsForCausalLM|IdeficsForVisionText2Text|g * manual to one line * addressing review * unbreak * remove clip dependency * fix test * consistency * PIL import * Idefics prefix * Idefics prefix * hack to make tests work * style * fix * fix * revert * try/finally * cleanup * clean up * move * [`IDEFICS`] Fix idefics config refactor (#25149) * refactor config * nuke init weights * more refactor * oops * remove visual question answering pipeline support * Update src/transformers/models/idefics/clip.py Co-authored-by: Stas Bekman <stas00@users.noreply.github.com> * Update src/transformers/models/idefics/modeling_idefics.py * cleanup * mv clip.py vision.py * tidyup --------- Co-authored-by: Stas Bekman <stas00@users.noreply.github.com> Co-authored-by: Stas Bekman <stas@stason.org> * fix * license * condition on pt * fix * style * fix * rm torchvision dependency, allow custom transforms * address review * rework device arg * add_eos_token * s/transforms/transform/ * fix top level imports * fix return value * cleanup * cleanup * fix * style * license * license * Update src/transformers/models/idefics/image_processing_idefics.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * add a wrapper to freeze vision layears * tidyup * use the correct std/mean settings * parameterize values from config * add tests/models/idefics/test_image_processing_idefics.py * add test_processor_idefics.py * cleanup * cleanups * fix * fix * move to the right group * style * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * add perceiver config * reset * missing arg docs * Apply suggestions from code review Co-authored-by: Leo Tronchon <leo.tronchon@gmail.com> * address review comments * inject automatic end of utterance tokens (#25218) * inject automatic end of utterance tokens * fix * fix * fix * rework to not use the config * not end_of_utterance_token at the end * Update src/transformers/models/idefics/processing_idefics.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * address review * Apply suggestions from code review Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com> * Update src/transformers/image_processing_utils.py Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com> * [`Idefics`] add image_embeddings option in generate-related methods (#25442) * add image_embeddings option in generate-related methods * style * rename image_embeddings and allow perceiver embeddings precomputation * compute embeddings within generate * make is_encoder_decoder= True the default in config * nested if else fix * better triple check * switch if elif order for pixel values / img embeds * update model_kwargs perceiver only at the end * use _prepare_model_inputs instead of encoder_decoder logic * fix comment typo * fix config default for is_encoder_decoder * style * add typehints * precompute in forward * doc builder * style * pop instead of get image hidden states * Trigger CI * Update src/transformers/models/idefics/modeling_idefics.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/idefics/modeling_idefics.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * + indentation + style * simplify a bit the use_resampler logic using comments * update diocstrings * Trigger CI --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix rebase changes * unbreak #25237 - to be fixed in follow up PRs * is_composition = False * no longer needed --------- Co-authored-by: leot13 <leo.tronchon@gmail.com> Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Victor SANH <victorsanh@gmail.com> Co-authored-by: Joao Gante <joaofranciscocardosogante@gmail.com> Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
155 lines
5.3 KiB
Python
155 lines
5.3 KiB
Python
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
|
|
from transformers.testing_utils import TestCasePlus, require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import (
|
|
AutoProcessor,
|
|
IdeficsImageProcessor,
|
|
IdeficsProcessor,
|
|
LlamaTokenizerFast,
|
|
PreTrainedTokenizerFast,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class IdeficsProcessorTest(TestCasePlus):
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
self.checkpoint_path = self.get_auto_remove_tmp_dir()
|
|
|
|
image_processor = IdeficsImageProcessor()
|
|
tokenizer = LlamaTokenizerFast.from_pretrained("HuggingFaceM4/tiny-random-idefics")
|
|
|
|
processor = IdeficsProcessor(image_processor, tokenizer)
|
|
|
|
processor.save_pretrained(self.checkpoint_path)
|
|
|
|
self.input_keys = ["pixel_values", "input_ids", "attention_mask", "image_attention_mask"]
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.checkpoint_path, **kwargs).tokenizer
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.checkpoint_path, **kwargs).image_processor
|
|
|
|
def prepare_prompts(self):
|
|
"""This function prepares a list of PIL images"""
|
|
|
|
num_images = 2
|
|
images = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8) for x in range(num_images)]
|
|
images = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in images]
|
|
|
|
# print([type(x) for x in images])
|
|
# die
|
|
|
|
prompts = [
|
|
# text and 1 image
|
|
[
|
|
"User:",
|
|
images[0],
|
|
"Describe this image.\nAssistant:",
|
|
],
|
|
# text and images
|
|
[
|
|
"User:",
|
|
images[0],
|
|
"Describe this image.\nAssistant: An image of two dogs.\n",
|
|
"User:",
|
|
images[1],
|
|
"Describe this image.\nAssistant:",
|
|
],
|
|
# only text
|
|
[
|
|
"User:",
|
|
"Describe this image.\nAssistant: An image of two kittens.\n",
|
|
"User:",
|
|
"Describe this image.\nAssistant:",
|
|
],
|
|
# only images
|
|
[
|
|
images[0],
|
|
images[1],
|
|
],
|
|
]
|
|
|
|
return prompts
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = IdeficsProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
|
|
processor.save_pretrained(self.checkpoint_path)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
|
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = IdeficsProcessor.from_pretrained(
|
|
self.checkpoint_path, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)
|
|
|
|
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.image_processor, IdeficsImageProcessor)
|
|
|
|
def test_processor(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
prompts = self.prepare_prompts()
|
|
|
|
# test that all prompts succeeded
|
|
input_processor = processor(prompts, return_tensors="pt")
|
|
for key in self.input_keys:
|
|
assert torch.is_tensor(input_processor[key])
|
|
|
|
def test_tokenizer_decode(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|
|
|
|
def test_model_input_names(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
prompts = self.prepare_prompts()
|
|
|
|
inputs = processor(prompts)
|
|
|
|
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
|
|
self.assertSetEqual(set(inputs.keys()), set(self.input_keys))
|