# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from transformers.testing_utils import TestCasePlus, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, IdeficsImageProcessor, IdeficsProcessor, LlamaTokenizerFast, PreTrainedTokenizerFast, ) @require_torch @require_vision class IdeficsProcessorTest(TestCasePlus): def setUp(self): super().setUp() self.checkpoint_path = self.get_auto_remove_tmp_dir() image_processor = IdeficsImageProcessor() tokenizer = LlamaTokenizerFast.from_pretrained("HuggingFaceM4/tiny-random-idefics") processor = IdeficsProcessor(image_processor, tokenizer) processor.save_pretrained(self.checkpoint_path) self.input_keys = ["pixel_values", "input_ids", "attention_mask", "image_attention_mask"] def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.checkpoint_path, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.checkpoint_path, **kwargs).image_processor def prepare_prompts(self): """This function prepares a list of PIL images""" num_images = 2 images = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8) for x in range(num_images)] images = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in images] # print([type(x) for x in images]) # die prompts = [ # text and 1 image [ "User:", images[0], "Describe this image.\nAssistant:", ], # text and images [ "User:", images[0], "Describe this image.\nAssistant: An image of two dogs.\n", "User:", images[1], "Describe this image.\nAssistant:", ], # only text [ "User:", "Describe this image.\nAssistant: An image of two kittens.\n", "User:", "Describe this image.\nAssistant:", ], # only images [ images[0], images[1], ], ] return prompts def test_save_load_pretrained_additional_features(self): processor = IdeficsProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.checkpoint_path) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = IdeficsProcessor.from_pretrained( self.checkpoint_path, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, IdeficsImageProcessor) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor) prompts = self.prepare_prompts() # test that all prompts succeeded input_processor = processor(prompts, return_tensors="pt") for key in self.input_keys: assert torch.is_tensor(input_processor[key]) def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = IdeficsProcessor(tokenizer=tokenizer, image_processor=image_processor) prompts = self.prepare_prompts() inputs = processor(prompts) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertSetEqual(set(inputs.keys()), set(self.input_keys))