9.0 KiB
Llama
Llama is a family of large language models ranging from 7B to 65B parameters. These models are focused on efficient inference (important for serving language models) by training a smaller model on more tokens rather than training a larger model on fewer tokens. The Llama model is based on the GPT architecture, but it uses pre-normalization to improve training stability, replaces ReLU with SwiGLU to improve performance, and replaces absolute positional embeddings with rotary positional embeddings (RoPE) to better handle longer sequence lengths.
You can find all the original Llama checkpoints under the Huggy Llama organization.
Tip
Click on the Llama models in the right sidebar for more examples of how to apply Llama to different language tasks.
The example below demonstrates how to generate text with [Pipeline
] or the [AutoModel
], and from the command line.
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="huggyllama/llama-7b",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create energy through a process known as")
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"huggyllama/llama-7b",
)
model = AutoModelForCausalLM.from_pretrained(
"huggyllama/llama-7b",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model huggyllama/llama-7b --device 0
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses torchao to only quantize the weights to int4.
# pip install torchao
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
model = AutoModelForCausalLM.from_pretrained(
"huggyllama/llama-30b",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-30b")
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
Use the AttentionMaskVisualizer to better understand what tokens the model can and cannot attend to.
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("huggyllama/llama-7b")
visualizer("Plants create energy through a process known as")

Notes
- The tokenizer is a byte-pair encoding model based on SentencePiece. During decoding, if the first token is the start of the word (for example, "Banana"), the tokenizer doesn't prepend the prefix space to the string.
LlamaConfig
autodoc LlamaConfig
LlamaTokenizer
autodoc LlamaTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary
LlamaTokenizerFast
autodoc LlamaTokenizerFast - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - update_post_processor - save_vocabulary
LlamaModel
autodoc LlamaModel - forward
LlamaForCausalLM
autodoc LlamaForCausalLM - forward
LlamaForSequenceClassification
autodoc LlamaForSequenceClassification - forward
LlamaForQuestionAnswering
autodoc LlamaForQuestionAnswering - forward
LlamaForTokenClassification
autodoc LlamaForTokenClassification - forward
FlaxLlamaModel
autodoc FlaxLlamaModel - call
FlaxLlamaForCausalLM
autodoc FlaxLlamaForCausalLM - call