transformers/tests/models/mt5/test_modeling_tf_mt5.py
2022-07-05 16:22:03 +01:00

74 lines
3.1 KiB
Python

# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, T5Tokenizer, TFAutoModelForSeq2SeqLM, TFMT5ForConditionalGeneration
@require_tf
class TFMT5ModelTest(unittest.TestCase): # no mixin with common tests -> most cases are already covered in the TF T5
@slow
def test_resize_embeddings(self):
model = TFMT5ForConditionalGeneration.from_pretrained("google/mt5-small")
original_vocab_size = model.get_input_embeddings().weight.shape[0]
# the vocab size is defined in the model config
self.assertEqual(original_vocab_size, model.config.vocab_size)
tokenizer = T5Tokenizer.from_pretrained("google/mt5-small")
tokenizer.add_special_tokens({"bos_token": "", "eos_token": ""})
model._resize_token_embeddings(len(tokenizer))
# the vocab size is now resized to the length of the tokenizer, which is different from the original size
self.assertEqual(model.get_input_embeddings().weight.shape[0], len(tokenizer))
self.assertNotEqual(model.get_input_embeddings().weight.shape[0], original_vocab_size)
@require_tf
@require_sentencepiece
@require_tokenizers
class TFMT5ModelIntegrationTest(unittest.TestCase):
@slow
def test_small_integration_test(self):
"""
For comparision run:
>>> import t5 # pip install t5==0.7.1
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary
>>> path_to_mtf_small_mt5_checkpoint = '<fill_in>'
>>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None)
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path, extra_ids=100)
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model = TFAutoModelForSeq2SeqLM.from_pretrained("google/mt5-small")
tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
input_ids = tokenizer("Hello there", return_tensors="tf").input_ids
labels = tokenizer("Hi I am", return_tensors="tf").input_ids
loss = model(input_ids, labels=labels).loss
mtf_score = -tf.math.reduce_mean(loss).numpy()
EXPECTED_SCORE = -21.210594
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2e-4)