# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, T5Tokenizer, TFAutoModelForSeq2SeqLM, TFMT5ForConditionalGeneration @require_tf class TFMT5ModelTest(unittest.TestCase): # no mixin with common tests -> most cases are already covered in the TF T5 @slow def test_resize_embeddings(self): model = TFMT5ForConditionalGeneration.from_pretrained("google/mt5-small") original_vocab_size = model.get_input_embeddings().weight.shape[0] # the vocab size is defined in the model config self.assertEqual(original_vocab_size, model.config.vocab_size) tokenizer = T5Tokenizer.from_pretrained("google/mt5-small") tokenizer.add_special_tokens({"bos_token": "", "eos_token": ""}) model._resize_token_embeddings(len(tokenizer)) # the vocab size is now resized to the length of the tokenizer, which is different from the original size self.assertEqual(model.get_input_embeddings().weight.shape[0], len(tokenizer)) self.assertNotEqual(model.get_input_embeddings().weight.shape[0], original_vocab_size) @require_tf @require_sentencepiece @require_tokenizers class TFMT5ModelIntegrationTest(unittest.TestCase): @slow def test_small_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_mt5_checkpoint = '' >>> path_to_mtf_small_mt5_spm_model_path = '' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path, extra_ids=100) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = TFAutoModelForSeq2SeqLM.from_pretrained("google/mt5-small") tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") input_ids = tokenizer("Hello there", return_tensors="tf").input_ids labels = tokenizer("Hi I am", return_tensors="tf").input_ids loss = model(input_ids, labels=labels).loss mtf_score = -tf.math.reduce_mean(loss).numpy() EXPECTED_SCORE = -21.210594 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2e-4)