transformers/docs/source/en/main_classes/quantization.md
mobicham 59952994c4
Add HQQ quantization support (#29637)
* update HQQ transformers integration

* push import_utils.py

* add force_hooks check in modeling_utils.py

* fix | with Optional

* force bias as param

* check bias is Tensor

* force forward for multi-gpu

* review fixes pass

* remove torch grad()

* if any key in linear_tags fix

* add cpu/disk check

* isinstance return

* add multigpu test + refactor tests

* clean hqq_utils imports in hqq.py

* clean hqq_utils imports in quantizer_hqq.py

* delete hqq_utils.py

* Delete src/transformers/utils/hqq_utils.py

* ruff init

* remove torch.float16 from __init__ in test

* refactor test

* isinstance -> type in quantizer_hqq.py

* cpu/disk device_map check in quantizer_hqq.py

* remove type(module) nn.linear check in quantizer_hqq.py

* add BaseQuantizeConfig import inside HqqConfig init

* remove hqq import in hqq.py

* remove accelerate import from test_hqq.py

* quant config.py doc update

* add hqqconfig to main_classes doc

* make style

* __init__ fix

* ruff __init__

* skip_modules list

* hqqconfig format fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* hqqconfig doc fix

* test_hqq.py remove mistral comment

* remove self.using_multi_gpu is False

* torch_dtype default val set and logger.info

* hqq.py isinstance fix

* remove torch=None

* torch_device test_hqq

* rename test_hqq

* MODEL_ID in test_hqq

* quantizer_hqq setattr fix

* quantizer_hqq typo fix

* imports quantizer_hqq.py

* isinstance quantizer_hqq

* hqq_layer.bias reformat quantizer_hqq

* Step 2 as comment in quantizer_hqq

* prepare_for_hqq_linear() comment

* keep_in_fp32_modules fix

* HqqHfQuantizer reformat

* quantization.md hqqconfig

* quantization.md model example reformat

* quantization.md # space

* quantization.md space   })

* quantization.md space   })

* quantization_config fix doc

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* axis value check in quantization_config

* format

* dynamic config explanation

* quant config method in quantization.md

* remove shard-level progress

* .cuda fix modeling_utils

* test_hqq fixes

* make fix-copies

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2024-05-02 17:51:49 +01:00

1.7 KiB
Executable File

Quantization

Quantization techniques reduce memory and computational costs by representing weights and activations with lower-precision data types like 8-bit integers (int8). This enables loading larger models you normally wouldn't be able to fit into memory, and speeding up inference. Transformers supports the AWQ and GPTQ quantization algorithms and it supports 8-bit and 4-bit quantization with bitsandbytes.

Quantization techniques that aren't supported in Transformers can be added with the [HfQuantizer] class.

Learn how to quantize models in the Quantization guide.

QuantoConfig

autodoc QuantoConfig

AqlmConfig

autodoc AqlmConfig

AwqConfig

autodoc AwqConfig

EetqConfig

autodoc EetqConfig

GPTQConfig

autodoc GPTQConfig

BitsAndBytesConfig

autodoc BitsAndBytesConfig

HfQuantizer

autodoc quantizers.base.HfQuantizer

HqqConfig

autodoc HqqConfig