transformers/tests/models/hgnet_v2/test_modeling_hgnet_v2.py
Vladislav Bronzov 4abeb50f6e
Add D-FINE Model into Transformers (#36261)
* copy the last changes from broken PR

* small format

* some fixes and refactoring after review

* format

* add config attr for loss

* some fixes and refactoring

* fix copies

* fix style

* add test for d-fine resnet

* fix decoder layer prop

* fix dummies

* format init

* remove extra print

* refactor modeling, move resnet into separate folder

* fix resnet config

* change resnet on hgnet_v2, add clamp into decoder

* fix init

* fix config doc

* fix init

* fix dummies

* fix config docs

* fix hgnet_v2 config typo

* format modular

* add image classification for hgnet, some refactoring

* format tests

* fix dummies

* fix init

* fix style

* fix init for hgnet v2

* fix index.md, add init rnage for hgnet

* fix conversion

* add missing attr to encoder

* add loss for d-fine, add additional output for rt-detr decoder

* tests and docs fixes

* fix rt_detr v2 conversion

* some fixes for loos and decoder output

* some fixes for loss

* small fix for converted modeling

* add n model config, some todo comments for modular

* convert script adjustments and fixes, small refact

* remove extra output for rt_detr

* make some outputs optionsl, fix conversion

* some posr merge fixes

* small fix

* last field fix

* fix not split for hgnet_v2

* disable parallelism test for hgnet_v2 image classification

* skip multi gpu for d-fine

* adjust after merge init

* remove extra comment

* fix repo name references

* small fixes for tests

* Fix checkpoint path

* Fix consistency

* Fixing docs

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-04-29 12:17:55 +01:00

287 lines
11 KiB
Python

# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from torch import nn
from transformers import HGNetV2Config
from transformers.testing_utils import require_torch, torch_device
from transformers.utils.import_utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
from transformers import HGNetV2Backbone, HGNetV2ForImageClassification
class HGNetV2ModelTester:
def __init__(
self,
parent,
batch_size=3,
image_size=32,
num_channels=3,
embeddings_size=10,
hidden_sizes=[64, 128, 256, 512],
stage_in_channels=[16, 64, 128, 256],
stage_mid_channels=[16, 32, 64, 128],
stage_out_channels=[64, 128, 256, 512],
stage_num_blocks=[1, 1, 2, 1],
stage_downsample=[False, True, True, True],
stage_light_block=[False, False, True, True],
stage_kernel_size=[3, 3, 5, 5],
stage_numb_of_layers=[3, 3, 3, 3],
stem_channels=[3, 16, 16],
depths=[1, 1, 2, 1],
is_training=True,
use_labels=True,
hidden_act="relu",
num_labels=3,
scope=None,
out_features=["stage2", "stage3", "stage4"],
out_indices=[2, 3, 4],
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.embeddings_size = embeddings_size
self.hidden_sizes = hidden_sizes
self.stage_in_channels = stage_in_channels
self.stage_mid_channels = stage_mid_channels
self.stage_out_channels = stage_out_channels
self.stage_num_blocks = stage_num_blocks
self.stage_downsample = stage_downsample
self.stage_light_block = stage_light_block
self.stage_kernel_size = stage_kernel_size
self.stage_numb_of_layers = stage_numb_of_layers
self.stem_channels = stem_channels
self.depths = depths
self.is_training = is_training
self.use_labels = use_labels
self.hidden_act = hidden_act
self.num_labels = num_labels
self.scope = scope
self.num_stages = len(hidden_sizes)
self.out_features = out_features
self.out_indices = out_indices
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return HGNetV2Config(
num_channels=self.num_channels,
embeddings_size=self.embeddings_size,
hidden_sizes=self.hidden_sizes,
stage_in_channels=self.stage_in_channels,
stage_mid_channels=self.stage_mid_channels,
stage_out_channels=self.stage_out_channels,
stage_num_blocks=self.stage_num_blocks,
stage_downsample=self.stage_downsample,
stage_light_block=self.stage_light_block,
stage_kernel_size=self.stage_kernel_size,
stage_numb_of_layers=self.stage_numb_of_layers,
stem_channels=self.stem_channels,
depths=self.depths,
hidden_act=self.hidden_act,
num_labels=self.num_labels,
out_features=self.out_features,
out_indices=self.out_indices,
)
def create_and_check_backbone(self, config, pixel_values, labels):
model = HGNetV2Backbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4])
# verify channels
self.parent.assertEqual(len(model.channels), len(config.out_features))
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:])
# verify backbone works with out_features=None
config.out_features = None
model = HGNetV2Backbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), 1)
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1])
# verify channels
self.parent.assertEqual(len(model.channels), 1)
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]])
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = HGNetV2ForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class RTDetrResNetBackboneTest(BackboneTesterMixin, unittest.TestCase):
all_model_classes = (HGNetV2Backbone,) if is_torch_available() else ()
has_attentions = False
config_class = HGNetV2Config
def setUp(self):
self.model_tester = HGNetV2ModelTester(self)
@require_torch
class HGNetV2ForImageClassificationTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some tests of test_modeling_common.py, as TextNet does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (HGNetV2ForImageClassification, HGNetV2Backbone) if is_torch_available() else ()
pipeline_model_mapping = {"image-classification": HGNetV2ForImageClassification} if is_torch_available() else {}
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_torch_exportable = True
has_attentions = False
def setUp(self):
self.model_tester = HGNetV2ModelTester(self)
@unittest.skip(reason="Does not work on the tiny model.")
def test_model_parallelism(self):
super().test_model_parallelism()
@unittest.skip(reason="HGNetV2 does not output attentions")
def test_attention_outputs(self):
pass
@unittest.skip(reason="HGNetV2 does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="HGNetV2 does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="HGNetV2 does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="HGNetV2 does not have a model")
def test_model(self):
pass
@unittest.skip(reason="Not relevant for the model")
def test_can_init_all_missing_weights(self):
pass
def test_backbone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*config_and_inputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config=config)
for name, module in model.named_modules():
if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
self.assertTrue(
torch.all(module.weight == 1),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
self.assertTrue(
torch.all(module.bias == 0),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
self.assertEqual(len(hidden_states), self.model_tester.num_stages + 1)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.image_size // 4, self.model_tester.image_size // 4],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
layers_type = ["preactivation", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
config.layer_type = layer_type
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
@unittest.skip(reason="Retain_grad is not supposed to be tested")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="TextNet does not use feedforward chunking")
def test_feed_forward_chunking(self):
pass
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@unittest.skip(reason="HGNetV2 does not use model")
def test_model_from_pretrained(self):
pass