mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* copy the last changes from broken PR * small format * some fixes and refactoring after review * format * add config attr for loss * some fixes and refactoring * fix copies * fix style * add test for d-fine resnet * fix decoder layer prop * fix dummies * format init * remove extra print * refactor modeling, move resnet into separate folder * fix resnet config * change resnet on hgnet_v2, add clamp into decoder * fix init * fix config doc * fix init * fix dummies * fix config docs * fix hgnet_v2 config typo * format modular * add image classification for hgnet, some refactoring * format tests * fix dummies * fix init * fix style * fix init for hgnet v2 * fix index.md, add init rnage for hgnet * fix conversion * add missing attr to encoder * add loss for d-fine, add additional output for rt-detr decoder * tests and docs fixes * fix rt_detr v2 conversion * some fixes for loos and decoder output * some fixes for loss * small fix for converted modeling * add n model config, some todo comments for modular * convert script adjustments and fixes, small refact * remove extra output for rt_detr * make some outputs optionsl, fix conversion * some posr merge fixes * small fix * last field fix * fix not split for hgnet_v2 * disable parallelism test for hgnet_v2 image classification * skip multi gpu for d-fine * adjust after merge init * remove extra comment * fix repo name references * small fixes for tests * Fix checkpoint path * Fix consistency * Fixing docs --------- Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
287 lines
11 KiB
Python
287 lines
11 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import HGNetV2Config
|
|
from transformers.testing_utils import require_torch, torch_device
|
|
from transformers.utils.import_utils import is_torch_available
|
|
|
|
from ...test_backbone_common import BackboneTesterMixin
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
from transformers import HGNetV2Backbone, HGNetV2ForImageClassification
|
|
|
|
|
|
class HGNetV2ModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=3,
|
|
image_size=32,
|
|
num_channels=3,
|
|
embeddings_size=10,
|
|
hidden_sizes=[64, 128, 256, 512],
|
|
stage_in_channels=[16, 64, 128, 256],
|
|
stage_mid_channels=[16, 32, 64, 128],
|
|
stage_out_channels=[64, 128, 256, 512],
|
|
stage_num_blocks=[1, 1, 2, 1],
|
|
stage_downsample=[False, True, True, True],
|
|
stage_light_block=[False, False, True, True],
|
|
stage_kernel_size=[3, 3, 5, 5],
|
|
stage_numb_of_layers=[3, 3, 3, 3],
|
|
stem_channels=[3, 16, 16],
|
|
depths=[1, 1, 2, 1],
|
|
is_training=True,
|
|
use_labels=True,
|
|
hidden_act="relu",
|
|
num_labels=3,
|
|
scope=None,
|
|
out_features=["stage2", "stage3", "stage4"],
|
|
out_indices=[2, 3, 4],
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.num_channels = num_channels
|
|
self.embeddings_size = embeddings_size
|
|
self.hidden_sizes = hidden_sizes
|
|
self.stage_in_channels = stage_in_channels
|
|
self.stage_mid_channels = stage_mid_channels
|
|
self.stage_out_channels = stage_out_channels
|
|
self.stage_num_blocks = stage_num_blocks
|
|
self.stage_downsample = stage_downsample
|
|
self.stage_light_block = stage_light_block
|
|
self.stage_kernel_size = stage_kernel_size
|
|
self.stage_numb_of_layers = stage_numb_of_layers
|
|
self.stem_channels = stem_channels
|
|
self.depths = depths
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.hidden_act = hidden_act
|
|
self.num_labels = num_labels
|
|
self.scope = scope
|
|
self.num_stages = len(hidden_sizes)
|
|
self.out_features = out_features
|
|
self.out_indices = out_indices
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size], self.num_labels)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def get_config(self):
|
|
return HGNetV2Config(
|
|
num_channels=self.num_channels,
|
|
embeddings_size=self.embeddings_size,
|
|
hidden_sizes=self.hidden_sizes,
|
|
stage_in_channels=self.stage_in_channels,
|
|
stage_mid_channels=self.stage_mid_channels,
|
|
stage_out_channels=self.stage_out_channels,
|
|
stage_num_blocks=self.stage_num_blocks,
|
|
stage_downsample=self.stage_downsample,
|
|
stage_light_block=self.stage_light_block,
|
|
stage_kernel_size=self.stage_kernel_size,
|
|
stage_numb_of_layers=self.stage_numb_of_layers,
|
|
stem_channels=self.stem_channels,
|
|
depths=self.depths,
|
|
hidden_act=self.hidden_act,
|
|
num_labels=self.num_labels,
|
|
out_features=self.out_features,
|
|
out_indices=self.out_indices,
|
|
)
|
|
|
|
def create_and_check_backbone(self, config, pixel_values, labels):
|
|
model = HGNetV2Backbone(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
|
|
# verify feature maps
|
|
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
|
|
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4])
|
|
|
|
# verify channels
|
|
self.parent.assertEqual(len(model.channels), len(config.out_features))
|
|
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:])
|
|
|
|
# verify backbone works with out_features=None
|
|
config.out_features = None
|
|
model = HGNetV2Backbone(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
|
|
# verify feature maps
|
|
self.parent.assertEqual(len(result.feature_maps), 1)
|
|
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1])
|
|
|
|
# verify channels
|
|
self.parent.assertEqual(len(model.channels), 1)
|
|
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]])
|
|
|
|
def create_and_check_for_image_classification(self, config, pixel_values, labels):
|
|
config.num_labels = self.num_labels
|
|
model = HGNetV2ForImageClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values, labels=labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values, labels = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class RTDetrResNetBackboneTest(BackboneTesterMixin, unittest.TestCase):
|
|
all_model_classes = (HGNetV2Backbone,) if is_torch_available() else ()
|
|
has_attentions = False
|
|
config_class = HGNetV2Config
|
|
|
|
def setUp(self):
|
|
self.model_tester = HGNetV2ModelTester(self)
|
|
|
|
|
|
@require_torch
|
|
class HGNetV2ForImageClassificationTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some tests of test_modeling_common.py, as TextNet does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (HGNetV2ForImageClassification, HGNetV2Backbone) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"image-classification": HGNetV2ForImageClassification} if is_torch_available() else {}
|
|
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
test_torch_exportable = True
|
|
has_attentions = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = HGNetV2ModelTester(self)
|
|
|
|
@unittest.skip(reason="Does not work on the tiny model.")
|
|
def test_model_parallelism(self):
|
|
super().test_model_parallelism()
|
|
|
|
@unittest.skip(reason="HGNetV2 does not output attentions")
|
|
def test_attention_outputs(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="HGNetV2 does not have input/output embeddings")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="HGNetV2 does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="HGNetV2 does not support input and output embeddings")
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="HGNetV2 does not have a model")
|
|
def test_model(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Not relevant for the model")
|
|
def test_can_init_all_missing_weights(self):
|
|
pass
|
|
|
|
def test_backbone(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_backbone(*config_and_inputs)
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=config)
|
|
for name, module in model.named_modules():
|
|
if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
|
|
self.assertTrue(
|
|
torch.all(module.weight == 1),
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
self.assertTrue(
|
|
torch.all(module.bias == 0),
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
|
|
|
|
self.assertEqual(len(hidden_states), self.model_tester.num_stages + 1)
|
|
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[self.model_tester.image_size // 4, self.model_tester.image_size // 4],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
layers_type = ["preactivation", "bottleneck"]
|
|
for model_class in self.all_model_classes:
|
|
for layer_type in layers_type:
|
|
config.layer_type = layer_type
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
@unittest.skip(reason="Retain_grad is not supposed to be tested")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="TextNet does not use feedforward chunking")
|
|
def test_feed_forward_chunking(self):
|
|
pass
|
|
|
|
def test_for_image_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="HGNetV2 does not use model")
|
|
def test_model_from_pretrained(self):
|
|
pass
|