# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from torch import nn from transformers import HGNetV2Config from transformers.testing_utils import require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): from transformers import HGNetV2Backbone, HGNetV2ForImageClassification class HGNetV2ModelTester: def __init__( self, parent, batch_size=3, image_size=32, num_channels=3, embeddings_size=10, hidden_sizes=[64, 128, 256, 512], stage_in_channels=[16, 64, 128, 256], stage_mid_channels=[16, 32, 64, 128], stage_out_channels=[64, 128, 256, 512], stage_num_blocks=[1, 1, 2, 1], stage_downsample=[False, True, True, True], stage_light_block=[False, False, True, True], stage_kernel_size=[3, 3, 5, 5], stage_numb_of_layers=[3, 3, 3, 3], stem_channels=[3, 16, 16], depths=[1, 1, 2, 1], is_training=True, use_labels=True, hidden_act="relu", num_labels=3, scope=None, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.embeddings_size = embeddings_size self.hidden_sizes = hidden_sizes self.stage_in_channels = stage_in_channels self.stage_mid_channels = stage_mid_channels self.stage_out_channels = stage_out_channels self.stage_num_blocks = stage_num_blocks self.stage_downsample = stage_downsample self.stage_light_block = stage_light_block self.stage_kernel_size = stage_kernel_size self.stage_numb_of_layers = stage_numb_of_layers self.stem_channels = stem_channels self.depths = depths self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.num_labels = num_labels self.scope = scope self.num_stages = len(hidden_sizes) self.out_features = out_features self.out_indices = out_indices def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return HGNetV2Config( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, stage_in_channels=self.stage_in_channels, stage_mid_channels=self.stage_mid_channels, stage_out_channels=self.stage_out_channels, stage_num_blocks=self.stage_num_blocks, stage_downsample=self.stage_downsample, stage_light_block=self.stage_light_block, stage_kernel_size=self.stage_kernel_size, stage_numb_of_layers=self.stage_numb_of_layers, stem_channels=self.stem_channels, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, out_features=self.out_features, out_indices=self.out_indices, ) def create_and_check_backbone(self, config, pixel_values, labels): model = HGNetV2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:]) # verify backbone works with out_features=None config.out_features = None model = HGNetV2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels), 1) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = HGNetV2ForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class RTDetrResNetBackboneTest(BackboneTesterMixin, unittest.TestCase): all_model_classes = (HGNetV2Backbone,) if is_torch_available() else () has_attentions = False config_class = HGNetV2Config def setUp(self): self.model_tester = HGNetV2ModelTester(self) @require_torch class HGNetV2ForImageClassificationTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some tests of test_modeling_common.py, as TextNet does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (HGNetV2ForImageClassification, HGNetV2Backbone) if is_torch_available() else () pipeline_model_mapping = {"image-classification": HGNetV2ForImageClassification} if is_torch_available() else {} fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False test_torch_exportable = True has_attentions = False def setUp(self): self.model_tester = HGNetV2ModelTester(self) @unittest.skip(reason="Does not work on the tiny model.") def test_model_parallelism(self): super().test_model_parallelism() @unittest.skip(reason="HGNetV2 does not output attentions") def test_attention_outputs(self): pass @unittest.skip(reason="HGNetV2 does not have input/output embeddings") def test_model_get_set_embeddings(self): pass @unittest.skip(reason="HGNetV2 does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="HGNetV2 does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="HGNetV2 does not have a model") def test_model(self): pass @unittest.skip(reason="Not relevant for the model") def test_can_init_all_missing_weights(self): pass def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config=config) for name, module in model.named_modules(): if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1), msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) self.assertTrue( torch.all(module.bias == 0), msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states self.assertEqual(len(hidden_states), self.model_tester.num_stages + 1) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() layers_type = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: config.layer_type = layer_type inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) @unittest.skip(reason="Retain_grad is not supposed to be tested") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="TextNet does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @unittest.skip(reason="HGNetV2 does not use model") def test_model_from_pretrained(self): pass