mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-12 17:20:03 +06:00
490 lines
26 KiB
Python
490 lines
26 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Run BERT on SQuAD."""
|
|
|
|
from __future__ import absolute_import, division, print_function
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import random
|
|
import sys
|
|
from io import open
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
|
|
TensorDataset)
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from tqdm import tqdm, trange
|
|
|
|
from tensorboardX import SummaryWriter
|
|
|
|
from pytorch_transformers import (BertForQuestionAnswering, XLNetForQuestionAnswering,
|
|
XLMForQuestionAnswering, BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
|
|
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, XLM_PRETRAINED_MODEL_ARCHIVE_MAP)
|
|
from pytorch_transformers import (BertTokenizer, XLNetTokenizer,
|
|
XLMTokenizer)
|
|
|
|
from utils_squad import read_squad_examples, convert_examples_to_features, RawResult, write_predictions
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
ALL_MODELS = sum((tuple(m.keys()) for m in (BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
|
|
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
|
|
XLM_PRETRAINED_MODEL_ARCHIVE_MAP)), ())
|
|
|
|
MODEL_CLASSES = {
|
|
'bert': BertForQuestionAnswering,
|
|
'xlnet': XLNetForQuestionAnswering,
|
|
'xlm': XLMForQuestionAnswering,
|
|
}
|
|
|
|
TOKENIZER_CLASSES = {
|
|
'bert': BertTokenizer,
|
|
'xlnet': XLNetTokenizer,
|
|
'xlm': XLMTokenizer,
|
|
}
|
|
|
|
def train(args, train_dataset, model):
|
|
""" Train the model """
|
|
if args.local_rank in [-1, 0]:
|
|
tb_writer = SummaryWriter()
|
|
|
|
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
|
|
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
|
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
|
|
|
|
if args.max_steps > 0:
|
|
num_train_optimization_steps = args.max_steps
|
|
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
|
|
else:
|
|
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
|
|
|
# Prepare optimizer
|
|
no_decay = ['bias', 'LayerNorm.weight']
|
|
optimizer_grouped_parameters = [
|
|
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
|
|
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
|
]
|
|
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate,
|
|
t_total=num_train_optimization_steps, warmup=args.warmup_proportion)
|
|
if args.fp16:
|
|
try:
|
|
from apex import amp
|
|
except ImportError:
|
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
|
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
|
|
|
# Train!
|
|
logger.info("***** Running training *****")
|
|
logger.info(" Num examples = %d", len(train_dataset))
|
|
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
|
logger.info(" Batch size = %d", args.train_batch_size)
|
|
logger.info(" Total batch size (distributed) = %d", args.train_batch_size * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
|
|
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
|
logger.info(" Total optimization steps = %d", num_train_optimization_steps)
|
|
|
|
global_step = 0
|
|
tr_loss, logging_loss = 0.0, 0.0
|
|
model.train()
|
|
optimizer.zero_grad()
|
|
for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]):
|
|
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
|
|
batch = tuple(t.to(args.device) for t in batch)
|
|
inputs = {'input_ids': batch[0],
|
|
'attention_mask': batch[1],
|
|
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids
|
|
'labels': batch[3]}
|
|
ouputs = model(**inputs)
|
|
loss = ouputs[0]
|
|
|
|
|
|
def evalutate(args, dataset, model):
|
|
""" Evaluate the model """
|
|
|
|
|
|
|
|
def load_and_cache_examples(args, tokenizer, training=True):
|
|
""" Load data features from cache or dataset file. """
|
|
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
|
|
'dev' if evaluate else 'train',
|
|
list(filter(None, args.model_name.split('/'))).pop(),
|
|
str(args.max_seq_length),
|
|
str(task)))
|
|
if os.path.exists(cached_features_file):
|
|
logger.info("Loading features from cached file %s", cached_features_file)
|
|
features = torch.load(cached_features_file)
|
|
else:
|
|
logger.info("Creating features from dataset file at %s", args.data_dir)
|
|
label_list = processor.get_labels()
|
|
examples = read_squad_examples(input_file=args.train_file if training else args.predict_file,
|
|
is_training=training,
|
|
version_2_with_negative=args.version_2_with_negative)
|
|
features = convert_examples_to_features(
|
|
examples=examples,
|
|
tokenizer=tokenizer,
|
|
max_seq_length=args.max_seq_length,
|
|
doc_stride=args.doc_stride,
|
|
max_query_length=args.max_query_length,
|
|
is_training=training)
|
|
if args.local_rank in [-1, 0]:
|
|
logger.info("Num orig examples = %d", len(examples))
|
|
logger.info("Num split examples = %d", len(features))
|
|
logger.info("Saving features into cached file %s", cached_features_file)
|
|
torch.save(features, cached_features_file)
|
|
|
|
# Convert to Tensors and build dataset
|
|
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
|
|
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
|
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
|
if training:
|
|
all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
|
|
all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
|
|
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions)
|
|
else:
|
|
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
|
|
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
|
|
|
|
return dataset
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
|
|
## Required parameters
|
|
parser.add_argument("--train_file", default=None, type=str, required=True,
|
|
help="SQuAD json for training. E.g., train-v1.1.json")
|
|
parser.add_argument("--predict_file", default=None, type=str, required=True,
|
|
help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
|
|
parser.add_argument("--model_name", default=None, type=str, required=True,
|
|
help="Bert/XLNet/XLM pre-trained model selected in the list: " + ", ".join(ALL_MODELS))
|
|
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
|
help="The output directory where the model checkpoints and predictions will be written.")
|
|
|
|
## Other parameters
|
|
parser.add_argument('--version_2_with_negative', action='store_true',
|
|
help='If true, the SQuAD examples contain some that do not have an answer.')
|
|
parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
|
|
help="If null_score - best_non_null is greater than the threshold predict null.")
|
|
parser.add_argument('--overwrite_output_dir', action='store_true',
|
|
help="Overwrite the content of the output directory")
|
|
|
|
parser.add_argument("--max_seq_length", default=384, type=int,
|
|
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
|
|
"longer than this will be truncated, and sequences shorter than this will be padded.")
|
|
parser.add_argument("--doc_stride", default=128, type=int,
|
|
help="When splitting up a long document into chunks, how much stride to take between chunks.")
|
|
parser.add_argument("--max_query_length", default=64, type=int,
|
|
help="The maximum number of tokens for the question. Questions longer than this will "
|
|
"be truncated to this length.")
|
|
parser.add_argument("--do_train", action='store_true',
|
|
help="Whether to run training.")
|
|
parser.add_argument("--do_predict", action='store_true',
|
|
help="Whether to run eval on the dev set.")
|
|
parser.add_argument("--do_lower_case", action='store_true',
|
|
help="Whether to lower case the input text. True for uncased models, False for cased models.")
|
|
|
|
parser.add_argument("--train_batch_size", default=32, type=int,
|
|
help="Total batch size for training.")
|
|
parser.add_argument("--predict_batch_size", default=8, type=int,
|
|
help="Total batch size for predictions.")
|
|
parser.add_argument("--learning_rate", default=5e-5, type=float,
|
|
help="The initial learning rate for Adam.")
|
|
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
|
parser.add_argument("--num_train_epochs", default=3.0, type=float,
|
|
help="Total number of training epochs to perform.")
|
|
parser.add_argument("--warmup_proportion", default=0.1, type=float,
|
|
help="Proportion of training with linear learning rate warmup (0.1 = 10%% of training).")
|
|
parser.add_argument("--n_best_size", default=20, type=int,
|
|
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
|
|
parser.add_argument("--max_answer_length", default=30, type=int,
|
|
help="The maximum length of an answer that can be generated. This is needed because the start "
|
|
"and end predictions are not conditioned on one another.")
|
|
parser.add_argument("--verbose_logging", action='store_true',
|
|
help="If true, all of the warnings related to data processing will be printed. "
|
|
"A number of warnings are expected for a normal SQuAD evaluation.")
|
|
|
|
parser.add_argument("--no_cuda", action='store_true',
|
|
help="Whether not to use CUDA when available")
|
|
parser.add_argument('--seed', type=int, default=42,
|
|
help="random seed for initialization")
|
|
parser.add_argument("--local_rank", type=int, default=-1,
|
|
help="local_rank for distributed training on gpus")
|
|
parser.add_argument('--fp16', action='store_true',
|
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
|
|
parser.add_argument('--fp16_opt_level', type=str, default='O1',
|
|
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
|
"See details at https://nvidia.github.io/apex/amp.html")
|
|
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
|
|
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
|
|
args = parser.parse_args()
|
|
print(args)
|
|
|
|
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
|
|
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
|
|
|
|
if args.server_ip and args.server_port:
|
|
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
|
import ptvsd
|
|
print("Waiting for debugger attach")
|
|
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
|
ptvsd.wait_for_attach()
|
|
|
|
# Setup CUDA, GPU & distributed training
|
|
if args.local_rank == -1 or args.no_cuda:
|
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
|
args.n_gpu = torch.cuda.device_count()
|
|
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
|
torch.cuda.set_device(args.local_rank)
|
|
device = torch.device("cuda", args.local_rank)
|
|
torch.distributed.init_process_group(backend='nccl')
|
|
args.n_gpu = 1
|
|
args.device = device
|
|
|
|
# Setup logging
|
|
logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
|
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
|
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
|
|
|
|
# Setup seeds
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
if args.n_gpu > 0:
|
|
torch.cuda.manual_seed_all(args.seed)
|
|
|
|
# Load pretrained model and tokenizer
|
|
if args.local_rank not in [-1, 0]:
|
|
torch.distributed.barrier() # Make sure only 1st process in distributed training download model & vocab
|
|
|
|
args.model_type = args.model_name.lower().split('-')[0]
|
|
tokenizer_class = TOKENIZER_CLASSES[args.model_type]
|
|
model_class = MODEL_CLASSES[args.model_type]
|
|
tokenizer = tokenizer_class.from_pretrained(args.model_name, do_lower_case=args.do_lower_case)
|
|
model = model_class.from_pretrained(args.model_name, num_labels=num_labels)
|
|
|
|
if args.local_rank == 0:
|
|
torch.distributed.barrier()
|
|
|
|
# Distributed and parrallel training
|
|
model.to(args.device)
|
|
if args.local_rank != -1:
|
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
|
output_device=args.local_rank,
|
|
find_unused_parameters=True)
|
|
elif args.n_gpu > 1:
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
# Training
|
|
if args.do_train:
|
|
if args.local_rank in [-1, 0]:
|
|
tb_writer = SummaryWriter()
|
|
# Prepare data loader
|
|
train_examples = read_squad_examples(
|
|
input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
|
|
cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
|
|
list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
|
|
try:
|
|
with open(cached_train_features_file, "rb") as reader:
|
|
train_features = pickle.load(reader)
|
|
except:
|
|
train_features = convert_examples_to_features(
|
|
examples=train_examples,
|
|
tokenizer=tokenizer,
|
|
max_seq_length=args.max_seq_length,
|
|
doc_stride=args.doc_stride,
|
|
max_query_length=args.max_query_length,
|
|
is_training=True)
|
|
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
|
|
logger.info(" Saving train features into cached file %s", cached_train_features_file)
|
|
with open(cached_train_features_file, "wb") as writer:
|
|
pickle.dump(train_features, writer)
|
|
|
|
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
|
|
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
|
|
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
|
|
all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
|
|
all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
|
|
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
|
|
all_start_positions, all_end_positions)
|
|
if args.local_rank == -1:
|
|
train_sampler = RandomSampler(train_data)
|
|
else:
|
|
train_sampler = DistributedSampler(train_data)
|
|
|
|
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
|
|
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
|
# if args.local_rank != -1:
|
|
# num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
|
|
|
|
# Prepare optimizer
|
|
param_optimizer = list(model.named_parameters())
|
|
|
|
# hack to remove pooler, which is not used
|
|
# thus it produce None grad that break apex
|
|
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
|
|
|
|
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
|
optimizer_grouped_parameters = [
|
|
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
|
|
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
|
]
|
|
|
|
if args.fp16:
|
|
try:
|
|
from apex.optimizers import FP16_Optimizer
|
|
from apex.optimizers import FusedAdam
|
|
except ImportError:
|
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
|
|
|
|
optimizer = FusedAdam(optimizer_grouped_parameters,
|
|
lr=args.learning_rate,
|
|
bias_correction=False,
|
|
max_grad_norm=1.0)
|
|
if args.loss_scale == 0:
|
|
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
|
|
else:
|
|
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
|
|
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
|
|
t_total=num_train_optimization_steps)
|
|
else:
|
|
optimizer = BertAdam(optimizer_grouped_parameters,
|
|
lr=args.learning_rate,
|
|
warmup=args.warmup_proportion,
|
|
t_total=num_train_optimization_steps)
|
|
|
|
global_step = 0
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(" Num orig examples = %d", len(train_examples))
|
|
logger.info(" Num split examples = %d", len(train_features))
|
|
logger.info(" Batch size = %d", args.train_batch_size)
|
|
logger.info(" Num steps = %d", num_train_optimization_steps)
|
|
|
|
model.train()
|
|
for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
|
|
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
|
|
if n_gpu == 1:
|
|
batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
|
|
input_ids, input_mask, segment_ids, start_positions, end_positions = batch
|
|
loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
|
|
if n_gpu > 1:
|
|
loss = loss.mean() # mean() to average on multi-gpu.
|
|
if args.gradient_accumulation_steps > 1:
|
|
loss = loss / args.gradient_accumulation_steps
|
|
|
|
if args.fp16:
|
|
optimizer.backward(loss)
|
|
else:
|
|
loss.backward()
|
|
if (step + 1) % args.gradient_accumulation_steps == 0:
|
|
if args.fp16:
|
|
# modify learning rate with special warm up BERT uses
|
|
# if args.fp16 is False, BertAdam is used and handles this automatically
|
|
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = lr_this_step
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
global_step += 1
|
|
if args.local_rank in [-1, 0]:
|
|
if not args.fp16:
|
|
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
|
|
tb_writer.add_scalar('loss', loss.item(), global_step)
|
|
|
|
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
|
# Save a trained model, configuration and tokenizer
|
|
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
|
|
|
|
# If we save using the predefined names, we can load using `from_pretrained`
|
|
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
|
|
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
|
|
|
|
torch.save(model_to_save.state_dict(), output_model_file)
|
|
model_to_save.config.to_json_file(output_config_file)
|
|
tokenizer.save_vocabulary(args.output_dir)
|
|
|
|
# Load a trained model and vocabulary that you have fine-tuned
|
|
model = BertForQuestionAnswering.from_pretrained(args.output_dir)
|
|
tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
|
|
|
|
# Good practice: save your training arguments together with the trained model
|
|
output_args_file = os.path.join(args.output_dir, 'training_args.bin')
|
|
torch.save(args, output_args_file)
|
|
else:
|
|
model = BertForQuestionAnswering.from_pretrained(args.bert_model)
|
|
|
|
model.to(device)
|
|
|
|
if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
|
eval_examples = read_squad_examples(
|
|
input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
|
|
eval_features = convert_examples_to_features(
|
|
examples=eval_examples,
|
|
tokenizer=tokenizer,
|
|
max_seq_length=args.max_seq_length,
|
|
doc_stride=args.doc_stride,
|
|
max_query_length=args.max_query_length,
|
|
is_training=False)
|
|
|
|
logger.info("***** Running predictions *****")
|
|
logger.info(" Num orig examples = %d", len(eval_examples))
|
|
logger.info(" Num split examples = %d", len(eval_features))
|
|
logger.info(" Batch size = %d", args.predict_batch_size)
|
|
|
|
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
|
|
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
|
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
|
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
|
|
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
|
|
# Run prediction for full data
|
|
eval_sampler = SequentialSampler(eval_data)
|
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
|
|
|
|
model.eval()
|
|
all_results = []
|
|
logger.info("Start evaluating")
|
|
for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating", disable=args.local_rank not in [-1, 0]):
|
|
if len(all_results) % 1000 == 0:
|
|
logger.info("Processing example: %d" % (len(all_results)))
|
|
input_ids = input_ids.to(device)
|
|
input_mask = input_mask.to(device)
|
|
segment_ids = segment_ids.to(device)
|
|
with torch.no_grad():
|
|
batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
|
|
for i, example_index in enumerate(example_indices):
|
|
start_logits = batch_start_logits[i].detach().cpu().tolist()
|
|
end_logits = batch_end_logits[i].detach().cpu().tolist()
|
|
eval_feature = eval_features[example_index.item()]
|
|
unique_id = int(eval_feature.unique_id)
|
|
all_results.append(RawResult(unique_id=unique_id,
|
|
start_logits=start_logits,
|
|
end_logits=end_logits))
|
|
output_prediction_file = os.path.join(args.output_dir, "predictions.json")
|
|
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
|
|
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
|
|
write_predictions(eval_examples, eval_features, all_results,
|
|
args.n_best_size, args.max_answer_length,
|
|
args.do_lower_case, output_prediction_file,
|
|
output_nbest_file, output_null_log_odds_file, args.verbose_logging,
|
|
args.version_2_with_negative, args.null_score_diff_threshold)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|