mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
WIP examples
This commit is contained in:
parent
ed6c8d37f4
commit
50b7e52a7f
@ -37,7 +37,7 @@ from pytorch_transformers import (BertForSequenceClassification, XLNetForSequenc
|
||||
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, XLM_PRETRAINED_MODEL_ARCHIVE_MAP)
|
||||
from pytorch_transformers import (BertTokenizer, XLNetTokenizer,
|
||||
XLMTokenizer)
|
||||
from pytorch_transformers.optimization import BertAdam, WarmupLinearSchedule
|
||||
from pytorch_transformers.optimization import BertAdam
|
||||
|
||||
from utils_glue import processors, output_modes, convert_examples_to_features, compute_metrics
|
||||
|
||||
@ -60,12 +60,12 @@ TOKENIZER_CLASSES = {
|
||||
'xlm': XLMTokenizer,
|
||||
}
|
||||
|
||||
def train(args, train_dataset, model):
|
||||
def train(args, train_dataset, model, tokenizer):
|
||||
""" Train the model """
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer = SummaryWriter()
|
||||
|
||||
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
|
||||
args.train_batch_size = args.per_gpu_train_batch_size * args.n_gpu
|
||||
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
||||
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
|
||||
|
||||
@ -76,42 +76,36 @@ def train(args, train_dataset, model):
|
||||
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
||||
|
||||
# Prepare optimizer
|
||||
param_optimizer = list(model.named_parameters())
|
||||
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
||||
no_decay = ['bias', 'LayerNorm.weight']
|
||||
optimizer_grouped_parameters = [
|
||||
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
|
||||
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
||||
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
|
||||
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
||||
]
|
||||
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate,
|
||||
t_total=num_train_optimization_steps, warmup=args.warmup_proportion)
|
||||
if args.fp16:
|
||||
try:
|
||||
from apex.optimizers import FP16_Optimizer, FusedAdam
|
||||
from apex import amp
|
||||
except ImportError:
|
||||
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
||||
optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0)
|
||||
if args.loss_scale == 0:
|
||||
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
|
||||
else:
|
||||
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
|
||||
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion, t_total=num_train_optimization_steps)
|
||||
|
||||
else:
|
||||
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion,
|
||||
t_total=num_train_optimization_steps)
|
||||
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
||||
|
||||
# Train!
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(" Num examples = %d", len(train_dataset))
|
||||
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
||||
logger.info(" Batch size = %d", args.train_batch_size)
|
||||
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
|
||||
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
|
||||
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
|
||||
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
||||
logger.info(" Total optimization steps = %d", num_train_optimization_steps)
|
||||
|
||||
global_step = 0
|
||||
tr_loss = 0
|
||||
model.train()
|
||||
tr_loss, logging_loss = 0.0, 0.0
|
||||
optimizer.zero_grad()
|
||||
for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]):
|
||||
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
|
||||
model.train()
|
||||
batch = tuple(t.to(args.device) for t in batch)
|
||||
inputs = {'input_ids': batch[0],
|
||||
'attention_mask': batch[1],
|
||||
@ -125,23 +119,25 @@ def train(args, train_dataset, model):
|
||||
if args.gradient_accumulation_steps > 1:
|
||||
loss = loss / args.gradient_accumulation_steps
|
||||
|
||||
loss.backward() if not args.fp16 else optimizer.backward(loss)
|
||||
if args.fp16:
|
||||
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
||||
scaled_loss.backward()
|
||||
else:
|
||||
loss.backward()
|
||||
|
||||
tr_loss += loss.item()
|
||||
if (step + 1) % args.gradient_accumulation_steps == 0:
|
||||
if args.fp16:
|
||||
# modify learning rate with special warm up BERT uses
|
||||
# if args.fp16 is False, BertAdam is used that handles this automatically
|
||||
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group['lr'] = lr_this_step
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
global_step += 1
|
||||
if args.local_rank in [-1, 0]:
|
||||
if not args.fp16:
|
||||
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
|
||||
tb_writer.add_scalar('loss', loss.item(), global_step)
|
||||
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
||||
if args.local_rank == -1: # Only evaluate on single GPU otherwise metrics may not average well
|
||||
results = evaluate(args, model, tokenizer)
|
||||
for key, value in results.items():
|
||||
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
|
||||
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
|
||||
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
|
||||
logging_loss = tr_loss
|
||||
if args.max_steps > 0 and global_step > args.max_steps:
|
||||
break
|
||||
if args.max_steps > 0 and global_step > args.max_steps:
|
||||
@ -150,62 +146,71 @@ def train(args, train_dataset, model):
|
||||
return global_step, tr_loss / global_step
|
||||
|
||||
|
||||
def evalutate(args, eval_task, eval_output_dir, dataset, model):
|
||||
""" Evaluate the model """
|
||||
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
|
||||
os.makedirs(eval_output_dir)
|
||||
def evaluate(args, model, tokenizer):
|
||||
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
||||
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
|
||||
eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)
|
||||
|
||||
# Note that DistributedSampler samples randomly
|
||||
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
|
||||
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
||||
results = {}
|
||||
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
|
||||
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)
|
||||
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation *****")
|
||||
logger.info(" Num examples = %d", len(dataset))
|
||||
logger.info(" Batch size = %d", args.eval_batch_size)
|
||||
model.eval()
|
||||
eval_loss = 0
|
||||
nb_eval_steps = 0
|
||||
preds = None
|
||||
out_label_ids = None
|
||||
for batch in tqdm(eval_dataloader, desc="Evaluating"):
|
||||
batch = tuple(t.to(args.device) for t in batch)
|
||||
""" Evaluate the model """
|
||||
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
|
||||
os.makedirs(eval_output_dir)
|
||||
|
||||
with torch.no_grad():
|
||||
inputs = {'input_ids': batch[0],
|
||||
'attention_mask': batch[1],
|
||||
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids
|
||||
'labels': batch[3]}
|
||||
outputs = model(**inputs)
|
||||
tmp_eval_loss, logits = outputs[:2]
|
||||
# Note that DistributedSampler samples randomly
|
||||
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
|
||||
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
||||
|
||||
eval_loss += tmp_eval_loss.mean().item()
|
||||
nb_eval_steps += 1
|
||||
if preds is None:
|
||||
preds = logits.detach().cpu().numpy()
|
||||
out_label_ids = inputs['labels'].detach().cpu().numpy()
|
||||
else:
|
||||
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
|
||||
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation *****")
|
||||
logger.info(" Num examples = %d", len(eval_dataset))
|
||||
logger.info(" Batch size = %d", args.eval_batch_size)
|
||||
model.eval()
|
||||
eval_loss = 0
|
||||
nb_eval_steps = 0
|
||||
preds = None
|
||||
out_label_ids = None
|
||||
for batch in tqdm(eval_dataloader, desc="Evaluating"):
|
||||
batch = tuple(t.to(args.device) for t in batch)
|
||||
|
||||
eval_loss = eval_loss / nb_eval_steps
|
||||
if args.output_mode == "classification":
|
||||
preds = np.argmax(preds, axis=1)
|
||||
elif args.output_mode == "regression":
|
||||
preds = np.squeeze(preds)
|
||||
result = compute_metrics(eval_task, preds, out_label_ids)
|
||||
with torch.no_grad():
|
||||
inputs = {'input_ids': batch[0],
|
||||
'attention_mask': batch[1],
|
||||
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids
|
||||
'labels': batch[3]}
|
||||
outputs = model(**inputs)
|
||||
tmp_eval_loss, logits = outputs[:2]
|
||||
|
||||
output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
|
||||
with open(output_eval_file, "w") as writer:
|
||||
logger.info("***** Eval results *****")
|
||||
for key in sorted(result.keys()):
|
||||
logger.info(" %s = %s", key, str(result[key]))
|
||||
writer.write("%s = %s\n" % (key, str(result[key])))
|
||||
eval_loss += tmp_eval_loss.mean().item()
|
||||
nb_eval_steps += 1
|
||||
if preds is None:
|
||||
preds = logits.detach().cpu().numpy()
|
||||
out_label_ids = inputs['labels'].detach().cpu().numpy()
|
||||
else:
|
||||
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
|
||||
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
|
||||
|
||||
return result
|
||||
eval_loss = eval_loss / nb_eval_steps
|
||||
if args.output_mode == "classification":
|
||||
preds = np.argmax(preds, axis=1)
|
||||
elif args.output_mode == "regression":
|
||||
preds = np.squeeze(preds)
|
||||
result = compute_metrics(eval_task, preds, out_label_ids)
|
||||
results.update(result)
|
||||
|
||||
output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
|
||||
with open(output_eval_file, "w") as writer:
|
||||
logger.info("***** Eval results *****")
|
||||
for key in sorted(result.keys()):
|
||||
logger.info(" %s = %s", key, str(result[key]))
|
||||
writer.write("%s = %s\n" % (key, str(result[key])))
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
|
||||
def load_and_cache_examples(args, task, tokenizer, evaluate=False, overwrite_cache=False):
|
||||
processor = processors[task]()
|
||||
output_mode = output_modes[task]
|
||||
# Load data features from cache or dataset file
|
||||
@ -214,7 +219,7 @@ def load_and_cache_examples(args, task, tokenizer, evaluate=False):
|
||||
list(filter(None, args.model_name.split('/'))).pop(),
|
||||
str(args.max_seq_length),
|
||||
str(task)))
|
||||
if os.path.exists(cached_features_file):
|
||||
if os.path.exists(cached_features_file) and not args.overwrite_cache:
|
||||
logger.info("Loading features from cached file %s", cached_features_file)
|
||||
features = torch.load(cached_features_file)
|
||||
else:
|
||||
@ -270,39 +275,44 @@ def main():
|
||||
help="Whether to run eval on the dev set.")
|
||||
parser.add_argument("--do_lower_case", action='store_true',
|
||||
help="Set this flag if you are using an uncased model.")
|
||||
parser.add_argument("--train_batch_size", default=32, type=int,
|
||||
help="Total batch size for training.")
|
||||
|
||||
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
|
||||
help="Batch size per GPU for training.")
|
||||
parser.add_argument("--eval_batch_size", default=8, type=int,
|
||||
help="Total batch size for eval.")
|
||||
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
|
||||
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
||||
parser.add_argument("--learning_rate", default=5e-5, type=float,
|
||||
help="The initial learning rate for Adam.")
|
||||
parser.add_argument("--weight_decay", default=0.0, type=float,
|
||||
help="Weight deay if we apply some.")
|
||||
parser.add_argument("--num_train_epochs", default=3.0, type=float,
|
||||
help="Total number of training epochs to perform.")
|
||||
parser.add_argument("--max_steps", default=-1, type=int,
|
||||
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
|
||||
parser.add_argument("--warmup_proportion", default=0.1, type=float,
|
||||
help="Proportion of training with linear learning rate warmup (0.1 = 10%% of training).")
|
||||
|
||||
parser.add_argument('--logging_steps', type=int, default=100,
|
||||
help="Log every X updates steps.")
|
||||
parser.add_argument("--no_cuda", action='store_true',
|
||||
help="Avoid using CUDA when available")
|
||||
parser.add_argument('--overwrite_output_dir', action='store_true',
|
||||
help="Overwrite the content of the output directory")
|
||||
parser.add_argument('--overwrite_cache', action='store_true',
|
||||
help="Overwrite the cached training and evaluation sets")
|
||||
parser.add_argument('--seed', type=int, default=42,
|
||||
help="random seed for initialization")
|
||||
|
||||
parser.add_argument('--fp16', action='store_true',
|
||||
help="Whether to use 16-bit float precision instead of 32-bit")
|
||||
parser.add_argument('--loss_scale', type=float, default=0,
|
||||
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
|
||||
"0 (default value): dynamic loss scaling.\n"
|
||||
"Positive power of 2: static loss scaling value.\n")
|
||||
|
||||
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
|
||||
parser.add_argument('--fp16_opt_level', type=str, default='O1',
|
||||
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
||||
"See details at https://nvidia.github.io/apex/amp.html")
|
||||
parser.add_argument("--local_rank", type=int, default=-1,
|
||||
help="local_rank for distributed training on gpus")
|
||||
|
||||
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
|
||||
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
|
||||
help="For distributed training: local_rank")
|
||||
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
|
||||
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
|
||||
args = parser.parse_args()
|
||||
|
||||
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
|
||||
@ -362,13 +372,10 @@ def main():
|
||||
if args.local_rank == 0:
|
||||
torch.distributed.barrier()
|
||||
|
||||
# Distributed, parrallel and fp16 model
|
||||
if args.fp16:
|
||||
model.half()
|
||||
# Distributed and parrallel training
|
||||
model.to(args.device)
|
||||
if args.local_rank != -1:
|
||||
model = torch.nn.parallel.DistributedDataParallel(model,
|
||||
device_ids=[args.local_rank],
|
||||
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
||||
output_device=args.local_rank,
|
||||
find_unused_parameters=True)
|
||||
elif args.n_gpu > 1:
|
||||
@ -377,7 +384,7 @@ def main():
|
||||
# Training
|
||||
if args.do_train:
|
||||
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
|
||||
global_step, tr_loss = train(args, train_dataset, model)
|
||||
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
|
||||
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
|
||||
|
||||
|
||||
@ -402,17 +409,10 @@ def main():
|
||||
model.to(args.device)
|
||||
|
||||
# Evaluation
|
||||
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
||||
# Handle MNLI double evaluation
|
||||
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
|
||||
eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)
|
||||
if args.do_eval and args.local_rank in [-1, 0]:
|
||||
results = evaluate(args, model, tokenizer)
|
||||
|
||||
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
|
||||
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)
|
||||
|
||||
result = evalutate(args, eval_task, eval_output_dir, eval_dataset, model)
|
||||
|
||||
return result
|
||||
return results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -33,36 +33,156 @@ from tqdm import tqdm, trange
|
||||
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
from pytorch_transformers import WEIGHTS_NAME, CONFIG_NAME
|
||||
from pytorch_transformers.modeling_bert import BertForQuestionAnswering
|
||||
from pytorch_transformers.optimization import BertAdam, WarmupLinearSchedule
|
||||
from pytorch_transformers.tokenization_bert import BertTokenizer
|
||||
from pytorch_transformers import (BertForQuestionAnswering, XLNetForQuestionAnswering,
|
||||
XLMForQuestionAnswering, BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
|
||||
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP, XLM_PRETRAINED_MODEL_ARCHIVE_MAP)
|
||||
from pytorch_transformers import (BertTokenizer, XLNetTokenizer,
|
||||
XLMTokenizer)
|
||||
|
||||
from utils_squad import read_squad_examples, convert_examples_to_features, RawResult, write_predictions
|
||||
|
||||
if sys.version_info[0] == 2:
|
||||
import cPickle as pickle
|
||||
else:
|
||||
import pickle
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
ALL_MODELS = sum((tuple(m.keys()) for m in (BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
|
||||
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
|
||||
XLM_PRETRAINED_MODEL_ARCHIVE_MAP)), ())
|
||||
|
||||
MODEL_CLASSES = {
|
||||
'bert': BertForQuestionAnswering,
|
||||
'xlnet': XLNetForQuestionAnswering,
|
||||
'xlm': XLMForQuestionAnswering,
|
||||
}
|
||||
|
||||
TOKENIZER_CLASSES = {
|
||||
'bert': BertTokenizer,
|
||||
'xlnet': XLNetTokenizer,
|
||||
'xlm': XLMTokenizer,
|
||||
}
|
||||
|
||||
def train(args, train_dataset, model):
|
||||
""" Train the model """
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer = SummaryWriter()
|
||||
|
||||
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
|
||||
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
||||
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
|
||||
|
||||
if args.max_steps > 0:
|
||||
num_train_optimization_steps = args.max_steps
|
||||
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
|
||||
else:
|
||||
num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
||||
|
||||
# Prepare optimizer
|
||||
no_decay = ['bias', 'LayerNorm.weight']
|
||||
optimizer_grouped_parameters = [
|
||||
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
|
||||
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
||||
]
|
||||
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate,
|
||||
t_total=num_train_optimization_steps, warmup=args.warmup_proportion)
|
||||
if args.fp16:
|
||||
try:
|
||||
from apex import amp
|
||||
except ImportError:
|
||||
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
||||
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
||||
|
||||
# Train!
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(" Num examples = %d", len(train_dataset))
|
||||
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
||||
logger.info(" Batch size = %d", args.train_batch_size)
|
||||
logger.info(" Total batch size (distributed) = %d", args.train_batch_size * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
|
||||
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
||||
logger.info(" Total optimization steps = %d", num_train_optimization_steps)
|
||||
|
||||
global_step = 0
|
||||
tr_loss, logging_loss = 0.0, 0.0
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
for _ in trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]):
|
||||
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
|
||||
batch = tuple(t.to(args.device) for t in batch)
|
||||
inputs = {'input_ids': batch[0],
|
||||
'attention_mask': batch[1],
|
||||
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids
|
||||
'labels': batch[3]}
|
||||
ouputs = model(**inputs)
|
||||
loss = ouputs[0]
|
||||
|
||||
|
||||
def evalutate(args, dataset, model):
|
||||
""" Evaluate the model """
|
||||
|
||||
|
||||
|
||||
def load_and_cache_examples(args, tokenizer, training=True):
|
||||
""" Load data features from cache or dataset file. """
|
||||
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
|
||||
'dev' if evaluate else 'train',
|
||||
list(filter(None, args.model_name.split('/'))).pop(),
|
||||
str(args.max_seq_length),
|
||||
str(task)))
|
||||
if os.path.exists(cached_features_file):
|
||||
logger.info("Loading features from cached file %s", cached_features_file)
|
||||
features = torch.load(cached_features_file)
|
||||
else:
|
||||
logger.info("Creating features from dataset file at %s", args.data_dir)
|
||||
label_list = processor.get_labels()
|
||||
examples = read_squad_examples(input_file=args.train_file if training else args.predict_file,
|
||||
is_training=training,
|
||||
version_2_with_negative=args.version_2_with_negative)
|
||||
features = convert_examples_to_features(
|
||||
examples=examples,
|
||||
tokenizer=tokenizer,
|
||||
max_seq_length=args.max_seq_length,
|
||||
doc_stride=args.doc_stride,
|
||||
max_query_length=args.max_query_length,
|
||||
is_training=training)
|
||||
if args.local_rank in [-1, 0]:
|
||||
logger.info("Num orig examples = %d", len(examples))
|
||||
logger.info("Num split examples = %d", len(features))
|
||||
logger.info("Saving features into cached file %s", cached_features_file)
|
||||
torch.save(features, cached_features_file)
|
||||
|
||||
# Convert to Tensors and build dataset
|
||||
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
|
||||
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
|
||||
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
|
||||
if training:
|
||||
all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
|
||||
all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
|
||||
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions)
|
||||
else:
|
||||
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
|
||||
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
## Required parameters
|
||||
parser.add_argument("--bert_model", default=None, type=str, required=True,
|
||||
help="Bert pre-trained model selected in the list: bert-base-uncased, "
|
||||
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
|
||||
"bert-base-multilingual-cased, bert-base-chinese.")
|
||||
parser.add_argument("--train_file", default=None, type=str, required=True,
|
||||
help="SQuAD json for training. E.g., train-v1.1.json")
|
||||
parser.add_argument("--predict_file", default=None, type=str, required=True,
|
||||
help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
|
||||
parser.add_argument("--model_name", default=None, type=str, required=True,
|
||||
help="Bert/XLNet/XLM pre-trained model selected in the list: " + ", ".join(ALL_MODELS))
|
||||
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
||||
help="The output directory where the model checkpoints and predictions will be written.")
|
||||
|
||||
## Other parameters
|
||||
parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
|
||||
parser.add_argument("--predict_file", default=None, type=str,
|
||||
help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
|
||||
parser.add_argument('--version_2_with_negative', action='store_true',
|
||||
help='If true, the SQuAD examples contain some that do not have an answer.')
|
||||
parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
|
||||
help="If null_score - best_non_null is greater than the threshold predict null.")
|
||||
parser.add_argument('--overwrite_output_dir', action='store_true',
|
||||
help="Overwrite the content of the output directory")
|
||||
|
||||
parser.add_argument("--max_seq_length", default=384, type=int,
|
||||
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
|
||||
"longer than this will be truncated, and sequences shorter than this will be padded.")
|
||||
@ -71,65 +191,53 @@ def main():
|
||||
parser.add_argument("--max_query_length", default=64, type=int,
|
||||
help="The maximum number of tokens for the question. Questions longer than this will "
|
||||
"be truncated to this length.")
|
||||
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
|
||||
parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
|
||||
parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
|
||||
parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
|
||||
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
|
||||
parser.add_argument("--do_train", action='store_true',
|
||||
help="Whether to run training.")
|
||||
parser.add_argument("--do_predict", action='store_true',
|
||||
help="Whether to run eval on the dev set.")
|
||||
parser.add_argument("--do_lower_case", action='store_true',
|
||||
help="Whether to lower case the input text. True for uncased models, False for cased models.")
|
||||
|
||||
parser.add_argument("--train_batch_size", default=32, type=int,
|
||||
help="Total batch size for training.")
|
||||
parser.add_argument("--predict_batch_size", default=8, type=int,
|
||||
help="Total batch size for predictions.")
|
||||
parser.add_argument("--learning_rate", default=5e-5, type=float,
|
||||
help="The initial learning rate for Adam.")
|
||||
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
|
||||
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
||||
parser.add_argument("--num_train_epochs", default=3.0, type=float,
|
||||
help="Total number of training epochs to perform.")
|
||||
parser.add_argument("--warmup_proportion", default=0.1, type=float,
|
||||
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
|
||||
"of training.")
|
||||
help="Proportion of training with linear learning rate warmup (0.1 = 10%% of training).")
|
||||
parser.add_argument("--n_best_size", default=20, type=int,
|
||||
help="The total number of n-best predictions to generate in the nbest_predictions.json "
|
||||
"output file.")
|
||||
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
|
||||
parser.add_argument("--max_answer_length", default=30, type=int,
|
||||
help="The maximum length of an answer that can be generated. This is needed because the start "
|
||||
"and end predictions are not conditioned on one another.")
|
||||
parser.add_argument("--verbose_logging", action='store_true',
|
||||
help="If true, all of the warnings related to data processing will be printed. "
|
||||
"A number of warnings are expected for a normal SQuAD evaluation.")
|
||||
parser.add_argument("--no_cuda",
|
||||
action='store_true',
|
||||
|
||||
parser.add_argument("--no_cuda", action='store_true',
|
||||
help="Whether not to use CUDA when available")
|
||||
parser.add_argument('--seed',
|
||||
type=int,
|
||||
default=42,
|
||||
parser.add_argument('--seed', type=int, default=42,
|
||||
help="random seed for initialization")
|
||||
parser.add_argument('--gradient_accumulation_steps',
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
||||
parser.add_argument("--do_lower_case",
|
||||
action='store_true',
|
||||
help="Whether to lower case the input text. True for uncased models, False for cased models.")
|
||||
parser.add_argument("--local_rank",
|
||||
type=int,
|
||||
default=-1,
|
||||
parser.add_argument("--local_rank", type=int, default=-1,
|
||||
help="local_rank for distributed training on gpus")
|
||||
parser.add_argument('--fp16',
|
||||
action='store_true',
|
||||
help="Whether to use 16-bit float precision instead of 32-bit")
|
||||
parser.add_argument('--overwrite_output_dir',
|
||||
action='store_true',
|
||||
help="Overwrite the content of the output directory")
|
||||
parser.add_argument('--loss_scale',
|
||||
type=float, default=0,
|
||||
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
|
||||
"0 (default value): dynamic loss scaling.\n"
|
||||
"Positive power of 2: static loss scaling value.\n")
|
||||
parser.add_argument('--version_2_with_negative',
|
||||
action='store_true',
|
||||
help='If true, the SQuAD examples contain some that do not have an answer.')
|
||||
parser.add_argument('--null_score_diff_threshold',
|
||||
type=float, default=0.0,
|
||||
help="If null_score - best_non_null is greater than the threshold predict null.")
|
||||
parser.add_argument('--fp16', action='store_true',
|
||||
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
|
||||
parser.add_argument('--fp16_opt_level', type=str, default='O1',
|
||||
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
||||
"See details at https://nvidia.github.io/apex/amp.html")
|
||||
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
|
||||
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
|
||||
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
|
||||
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
|
||||
|
||||
if args.server_ip and args.server_port:
|
||||
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
||||
import ptvsd
|
||||
@ -137,71 +245,52 @@ def main():
|
||||
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
||||
ptvsd.wait_for_attach()
|
||||
|
||||
# Setup CUDA, GPU & distributed training
|
||||
if args.local_rank == -1 or args.no_cuda:
|
||||
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
||||
n_gpu = torch.cuda.device_count()
|
||||
else:
|
||||
args.n_gpu = torch.cuda.device_count()
|
||||
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
||||
torch.cuda.set_device(args.local_rank)
|
||||
device = torch.device("cuda", args.local_rank)
|
||||
n_gpu = 1
|
||||
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
||||
torch.distributed.init_process_group(backend='nccl')
|
||||
args.n_gpu = 1
|
||||
args.device = device
|
||||
|
||||
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
||||
datefmt = '%m/%d/%Y %H:%M:%S',
|
||||
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
||||
|
||||
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
|
||||
device, n_gpu, bool(args.local_rank != -1), args.fp16))
|
||||
|
||||
if args.gradient_accumulation_steps < 1:
|
||||
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
|
||||
args.gradient_accumulation_steps))
|
||||
|
||||
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
|
||||
# Setup logging
|
||||
logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
||||
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
||||
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
|
||||
|
||||
# Setup seeds
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
if n_gpu > 0:
|
||||
if args.n_gpu > 0:
|
||||
torch.cuda.manual_seed_all(args.seed)
|
||||
|
||||
if not args.do_train and not args.do_predict:
|
||||
raise ValueError("At least one of `do_train` or `do_predict` must be True.")
|
||||
|
||||
if args.do_train:
|
||||
if not args.train_file:
|
||||
raise ValueError(
|
||||
"If `do_train` is True, then `train_file` must be specified.")
|
||||
if args.do_predict:
|
||||
if not args.predict_file:
|
||||
raise ValueError(
|
||||
"If `do_predict` is True, then `predict_file` must be specified.")
|
||||
|
||||
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
|
||||
raise ValueError("Output directory {} already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
|
||||
if not os.path.exists(args.output_dir):
|
||||
os.makedirs(args.output_dir)
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
if args.local_rank not in [-1, 0]:
|
||||
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
||||
torch.distributed.barrier() # Make sure only 1st process in distributed training download model & vocab
|
||||
|
||||
args.model_type = args.model_name.lower().split('-')[0]
|
||||
tokenizer_class = TOKENIZER_CLASSES[args.model_type]
|
||||
model_class = MODEL_CLASSES[args.model_type]
|
||||
tokenizer = tokenizer_class.from_pretrained(args.model_name, do_lower_case=args.do_lower_case)
|
||||
model = model_class.from_pretrained(args.model_name, num_labels=num_labels)
|
||||
|
||||
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
|
||||
model = BertForQuestionAnswering.from_pretrained(args.bert_model)
|
||||
if args.local_rank == 0:
|
||||
torch.distributed.barrier()
|
||||
|
||||
if args.fp16:
|
||||
model.half()
|
||||
model.to(device)
|
||||
# Distributed and parrallel training
|
||||
model.to(args.device)
|
||||
if args.local_rank != -1:
|
||||
model = torch.nn.parallel.DistributedDataParallel(model,
|
||||
device_ids=[args.local_rank],
|
||||
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
||||
output_device=args.local_rank,
|
||||
find_unused_parameters=True)
|
||||
elif n_gpu > 1:
|
||||
elif args.n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# Training
|
||||
if args.do_train:
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer = SummaryWriter()
|
||||
|
61
examples/utils.py
Normal file
61
examples/utils.py
Normal file
@ -0,0 +1,61 @@
|
||||
# Copyright (c) 2019-present, the HuggingFace Inc. authors.
|
||||
# All rights reserved. This source code is licensed under the BSD-style
|
||||
# license found in the LICENSE file in the root directory of this source tree.
|
||||
import logging
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from pprint import pformat
|
||||
|
||||
import torch
|
||||
|
||||
from ignite.engine import Engine, Events
|
||||
from ignite.handlers import ModelCheckpoint
|
||||
from ignite.metrics import RunningAverage
|
||||
from ignite.contrib.handlers import ProgressBar
|
||||
from ignite.contrib.handlers.tensorboard_logger import OptimizerParamsHandler, OutputHandler, TensorboardLogger
|
||||
|
||||
|
||||
def average_distributed_scalar(scalar, args):
|
||||
""" Average a scalar over nodes if we are in distributed training.
|
||||
We use this for distributed evaluation.
|
||||
Beware, such averages only works for metrics which are additive with regard
|
||||
to the evaluation dataset, e.g. accuracy, log probabilities.
|
||||
Doesn't work for ratio metrics like F1.
|
||||
"""
|
||||
if args.local_rank == -1:
|
||||
return scalar
|
||||
scalar_t = torch.tensor(scalar, dtype=torch.float, device=args.device) / torch.distributed.get_world_size()
|
||||
torch.distributed.all_reduce(scalar_t, op=torch.distributed.ReduceOp.SUM)
|
||||
return scalar_t.item()
|
||||
|
||||
|
||||
def add_logging_and_checkpoint_saving(trainer, evaluator, metrics, model, optimizer, args, prefix=""):
|
||||
""" Add to a PyTorch ignite training engine tensorboard logging,
|
||||
progress bar with average loss, checkpoint saving and save training config.
|
||||
"""
|
||||
# Add progress bar with average loss
|
||||
RunningAverage(output_transform=lambda x: x).attach(trainer, prefix + "loss")
|
||||
pbar = ProgressBar(persist=True)
|
||||
pbar.attach(trainer, metric_names=[prefix + "loss"])
|
||||
evaluator.add_event_handler(Events.COMPLETED, lambda _:
|
||||
pbar.log_message("Validation: %s" % pformat(evaluator.state.metrics)))
|
||||
|
||||
# Add tensorboard logging with training and evaluation metrics
|
||||
tb_logger = TensorboardLogger(log_dir=None)
|
||||
tb_logger.attach(trainer, log_handler=OutputHandler(tag="training", metric_names=[prefix + "loss"]),
|
||||
event_name=Events.ITERATION_COMPLETED)
|
||||
tb_logger.attach(trainer, log_handler=OptimizerParamsHandler(optimizer),
|
||||
event_name=Events.ITERATION_STARTED)
|
||||
@evaluator.on(Events.COMPLETED)
|
||||
def tb_log_metrics(engine):
|
||||
for name in metrics.keys():
|
||||
tb_logger.writer.add_scalar(name, engine.state.metrics[name], trainer.state.iteration)
|
||||
|
||||
# Add checkpoint saving after each epoch - take care of distributed encapsulation ('getattr()')
|
||||
checkpoint_handler = ModelCheckpoint(tb_logger.writer.log_dir, 'checkpoint', save_interval=1, n_saved=3)
|
||||
trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpoint_handler, {'mymodel': getattr(model, 'module', model)})
|
||||
|
||||
# Save training configuration
|
||||
torch.save(args, os.path.join(tb_logger.writer.log_dir, CONFIG_NAME))
|
||||
|
||||
return checkpoint_handler, tb_logger
|
@ -393,7 +393,7 @@ class XLNetRelativeAttention(nn.Module):
|
||||
x = x[1:, ...]
|
||||
x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
|
||||
# x = x[:, 0:klen, :, :]
|
||||
x = torch.index_select(x, 1, torch.arange(klen))
|
||||
x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))
|
||||
|
||||
return x
|
||||
|
||||
|
@ -227,6 +227,8 @@ class BertAdam(Optimizer):
|
||||
lr = []
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
state = self.state[p]
|
||||
if len(state) == 0:
|
||||
return [0]
|
||||
|
Loading…
Reference in New Issue
Block a user