transformers/docs/source/zh/perf_train_special.md
blueingman 2910015d6d
[i18n-zh]Translated perf_train_special.md into Chinese (#34948)
* Add translation for perf_train_special documentation

* Update docs/source/zh/perf_train_special.md

Co-authored-by: Isotr0py <2037008807@qq.com>

* Update docs/source/zh/perf_train_special.md

Co-authored-by: Isotr0py <2037008807@qq.com>

* Update _toctree.yml

* Update _toctree.yml

* Update perf_train_special.md

* Update perf_train_special.md

---------

Co-authored-by: Isotr0py <2037008807@qq.com>
2024-11-27 07:57:43 -08:00

59 lines
3.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 在 Apple Silicon 芯片上进行 PyTorch 训练
之前,在 Mac 上训练模型仅限于使用 CPU 训练。不过随着PyTorch v1.12的发布,您可以通过在 Apple Silicon 芯片的 GPU 上训练模型来显著提高性能和训练速度。这是通过将 Apple 的 Metal 性能着色器 (Metal Performance Shaders, MPS) 作为后端集成到PyTorch中实现的。[MPS后端](https://pytorch.org/docs/stable/notes/mps.html) 将 PyTorch 操作视为自定义的 Metal 着色器来实现,并将对应模块部署到`mps`设备上。
<Tip warning={true}>
某些 PyTorch 操作目前还未在 MPS 上实现,可能会抛出错误提示。可以通过设置环境变量`PYTORCH_ENABLE_MPS_FALLBACK=1`来使用CPU内核以避免这种情况发生您仍然会看到一个`UserWarning`)。
<br>
如果您遇到任何其他错误,请在[PyTorch库](https://github.com/pytorch/pytorch/issues)中创建一个 issue因为[`Trainer`]类中只集成了 MPS 后端.
</Tip>
配置好`mps`设备后,您可以:
* 在本地训练更大的网络或更大的批量大小
* 降低数据获取延迟,因为 GPU 的统一内存架构允许直接访问整个内存存储
* 降低成本,因为您不需要再在云端 GPU 上训练或增加额外的本地 GPU
在确保已安装PyTorch后就可以开始使用了。 MPS 加速支持macOS 12.3及以上版本。
```bash
pip install torch torchvision torchaudio
```
[`TrainingArguments`]类默认使用`mps`设备(如果可用)因此无需显式设置设备。例如,您可以直接运行[run_glue.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py)脚本,在无需进行任何修改的情况下自动启用 MPS 后端。
```diff
export TASK_NAME=mrpc
python examples/pytorch/text-classification/run_glue.py \
--model_name_or_path google-bert/bert-base-cased \
--task_name $TASK_NAME \
- --use_mps_device \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3 \
--output_dir /tmp/$TASK_NAME/ \
--overwrite_output_dir
```
用于[分布式设置](https://pytorch.org/docs/stable/distributed.html#backends)的后端(如`gloo`和`nccl`)不支持`mps`设备,这也意味着使用 MPS 后端时只能在单个 GPU 上进行训练。
您可以在[Introducing Accelerated PyTorch Training on Mac](https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/)博客文章中了解有关 MPS 后端的更多信息。