transformers/docs/source/en/model_doc/xlm.md
Aashish Anand 29ca043856
Created model card for XLM model (#38595)
* Created model card for XLM model

* Revised model card structure and content of XLM model

* Update XLM model documentation with improved examples and code snippets for predicting <mask> tokens using Pipeline and AutoModel.
2025-06-09 12:26:23 -07:00

4.5 KiB

PyTorch TensorFlow

XLM

XLM demonstrates cross-lingual pretraining with two approaches, unsupervised training on a single language and supervised training on more than one language with a cross-lingual language model objective. The XLM model supports the causal language modeling objective, masked language modeling, and translation language modeling (an extension of the BERT) masked language modeling objective to multiple language inputs).

You can find all the original XLM checkpoints under the Facebook AI community organization.

Tip

Click on the XLM models in the right sidebar for more examples of how to apply XLM to different cross-lingual tasks like classification, translation, and question answering.

The example below demonstrates how to predict the <mask> token with [Pipeline], [AutoModel] and from the command line.

import torch  
from transformers import pipeline  

pipeline = pipeline(  
    task="fill-mask",  
    model="facebook/xlm-roberta-xl",  
    torch_dtype=torch.float16,  
    device=0  
)  
pipeline("Bonjour, je suis un modèle <mask>.")
import torch  
from transformers import AutoModelForMaskedLM, AutoTokenizer  

tokenizer = AutoTokenizer.from_pretrained(  
    "FacebookAI/xlm-mlm-en-2048",  
)  
model = AutoModelForMaskedLM.from_pretrained(  
    "FacebookAI/xlm-mlm-en-2048",  
    torch_dtype=torch.float16,  
    device_map="auto",  
)  
inputs = tokenizer("Hello, I'm a <mask> model.", return_tensors="pt").to("cuda")

with torch.no_grad():
    outputs = model(**inputs)
    predictions = outputs.logits.argmax(dim=-1)

predicted_token = tokenizer.decode(predictions[0][inputs["input_ids"][0] == tokenizer.mask_token_id])
print(f"Predicted token: {predicted_token}")
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model FacebookAI/xlm-mlm-en-2048 --device 0

XLMConfig

autodoc XLMConfig

XLMTokenizer

autodoc XLMTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary

XLM specific outputs

autodoc models.xlm.modeling_xlm.XLMForQuestionAnsweringOutput

XLMModel

autodoc XLMModel - forward

XLMWithLMHeadModel

autodoc XLMWithLMHeadModel - forward

XLMForSequenceClassification

autodoc XLMForSequenceClassification - forward

XLMForMultipleChoice

autodoc XLMForMultipleChoice - forward

XLMForTokenClassification

autodoc XLMForTokenClassification - forward

XLMForQuestionAnsweringSimple

autodoc XLMForQuestionAnsweringSimple - forward

XLMForQuestionAnswering

autodoc XLMForQuestionAnswering - forward

TFXLMModel

autodoc TFXLMModel - call

TFXLMWithLMHeadModel

autodoc TFXLMWithLMHeadModel - call

TFXLMForSequenceClassification

autodoc TFXLMForSequenceClassification - call

TFXLMForMultipleChoice

autodoc TFXLMForMultipleChoice - call

TFXLMForTokenClassification

autodoc TFXLMForTokenClassification - call

TFXLMForQuestionAnsweringSimple

autodoc TFXLMForQuestionAnsweringSimple - call