
* Created model card for xlm-roberta-xl * Update XLM-RoBERTa-XL model card with improved descriptions and usage examples * Minor option labeling fix * Added MaskedLM version of XLM RoBERTa XL to model card * Added quantization example for XLM RoBERTa XL model card * minor fixes to xlm roberta xl model card * Minor fixes to mask format in xlm roberta xl model card
5.2 KiB
XLM-RoBERTa-XL
XLM-RoBERTa-XL is a 3.5B parameter multilingual masked language model pretrained on 100 languages. It shows that by scaling model capacity, multilingual models demonstrates strong performance on high-resource languages and can even zero-shot low-resource languages.
You can find all the original XLM-RoBERTa-XL checkpoints under the AI at Meta organization.
Tip
Click on the XLM-RoBERTa-XL models in the right sidebar for more examples of how to apply XLM-RoBERTa-XL to different cross-lingual tasks like classification, translation, and question answering.
The example below demonstrates how to predict the <mask>
token with [Pipeline
], [AutoModel
], and from the command line.
import torch
from transformers import pipeline
pipeline = pipeline(
task="fill-mask",
model="facebook/xlm-roberta-xl",
torch_dtype=torch.float16,
device=0
)
pipeline("Bonjour, je suis un modèle <mask>.")
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"facebook/xlm-roberta-xl",
)
model = AutoModelForMaskedLM.from_pretrained(
"facebook/xlm-roberta-xl",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model facebook/xlm-roberta-xl --device 0
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses torchao to only quantize the weights to int4.
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer, TorchAoConfig
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
tokenizer = AutoTokenizer.from_pretrained(
"facebook/xlm-roberta-xl",
)
model = AutoModelForMaskedLM.from_pretrained(
"facebook/xlm-roberta-xl",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa",
quantization_config=quantization_config
)
inputs = tokenizer("Bonjour, je suis un modèle <mask>.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
Notes
- Unlike some XLM models, XLM-RoBERTa-XL doesn't require
lang
tensors to understand which language is used. It automatically determines the language from the input ids.
XLMRobertaXLConfig
autodoc XLMRobertaXLConfig
XLMRobertaXLModel
autodoc XLMRobertaXLModel - forward
XLMRobertaXLForCausalLM
autodoc XLMRobertaXLForCausalLM - forward
XLMRobertaXLForMaskedLM
autodoc XLMRobertaXLForMaskedLM - forward
XLMRobertaXLForSequenceClassification
autodoc XLMRobertaXLForSequenceClassification - forward
XLMRobertaXLForMultipleChoice
autodoc XLMRobertaXLForMultipleChoice - forward
XLMRobertaXLForTokenClassification
autodoc XLMRobertaXLForTokenClassification - forward
XLMRobertaXLForQuestionAnswering
autodoc XLMRobertaXLForQuestionAnswering - forward