transformers/docs/source/en/model_doc/qwen2_moe.md
rileyafox 9487765f07
Some checks are pending
Self-hosted runner (benchmark) / Benchmark (aws-g5-4xlarge-cache) (push) Waiting to run
Build documentation / build (push) Waiting to run
Slow tests on important models (on Push - A10) / Get all modified files (push) Waiting to run
Slow tests on important models (on Push - A10) / Slow & FA2 tests (push) Blocked by required conditions
Secret Leaks / trufflehog (push) Waiting to run
Update Transformers metadata / build_and_package (push) Waiting to run
Add Qwen2 MoE model card (#38649)
* Add Qwen2 MoE model card

* Revisions to qwen2 moe model card

* Add Qwen2 MoE model card
2025-06-11 15:14:01 -07:00

5.3 KiB

PyTorch FlashAttention SDPA

Qwen2MoE

Qwen2MoE is a Mixture-of-Experts (MoE) variant of Qwen2, available as a base model and an aligned chat model. It uses SwiGLU activation, group query attention and a mixture of sliding window attention and full attention. The tokenizer can also be adapted to multiple languages and codes.

The MoE architecture uses upcyled models from the dense language models. For example, Qwen1.5-MoE-A2.7B is upcycled from Qwen-1.8B. It has 14.3B parameters but only 2.7B parameters are activated during runtime.

You can find all the original checkpoints in the Qwen1.5 collection.

Tip

Click on the Qwen2MoE models in the right sidebar for more examples of how to apply Qwen2MoE to different language tasks.

The example below demonstrates how to generate text with [Pipeline], [AutoModel], and from the command line.

import torch
from transformers import pipeline

pipe = pipeline(
    task="text-generation",
    model="Qwen/Qwen1.5-MoE-A2.7B",
    torch_dtype=torch.bfloat16,
    device_map=0
)

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Tell me about the Qwen2 model family."},
]
outputs = pipe(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"][-1]['content'])
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen1.5-MoE-A2.7B-Chat",
    torch_dtype=torch.bfloat16,
    device_map="auto",
    attn_implementation="sdpa"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat")

prompt = "Give me a short introduction to large language models."
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda")

generated_ids = model.generate(
    model_inputs.input_ids,
    cache_implementation="static",
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_k=50,
    top_p=0.95
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```bash transformers chat Qwen/Qwen1.5-MoE-A2.7B-Chat --torch_dtype auto --attn_implementation flash_attention_2 ```

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.

The example below uses bitsandbytes to quantize the weights to 8-bits.

# pip install -U flash-attn --no-build-isolation
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

quantization_config = BitsAndBytesConfig(
    load_in_8bit=True
)

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat")
model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen1.5-MoE-A2.7B-Chat",
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config,
    attn_implementation="flash_attention_2"
)

inputs = tokenizer("The Qwen2 model family is", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Qwen2MoeConfig

autodoc Qwen2MoeConfig

Qwen2MoeModel

autodoc Qwen2MoeModel - forward

Qwen2MoeForCausalLM

autodoc Qwen2MoeForCausalLM - forward

Qwen2MoeForSequenceClassification

autodoc Qwen2MoeForSequenceClassification - forward

Qwen2MoeForTokenClassification

autodoc Qwen2MoeForTokenClassification - forward

Qwen2MoeForQuestionAnswering

autodoc Qwen2MoeForQuestionAnswering - forward