
* Add Qwen2 MoE model card * Revisions to qwen2 moe model card * Add Qwen2 MoE model card
5.3 KiB
Qwen2MoE
Qwen2MoE is a Mixture-of-Experts (MoE) variant of Qwen2, available as a base model and an aligned chat model. It uses SwiGLU activation, group query attention and a mixture of sliding window attention and full attention. The tokenizer can also be adapted to multiple languages and codes.
The MoE architecture uses upcyled models from the dense language models. For example, Qwen1.5-MoE-A2.7B is upcycled from Qwen-1.8B. It has 14.3B parameters but only 2.7B parameters are activated during runtime.
You can find all the original checkpoints in the Qwen1.5 collection.
Tip
Click on the Qwen2MoE models in the right sidebar for more examples of how to apply Qwen2MoE to different language tasks.
The example below demonstrates how to generate text with [Pipeline
], [AutoModel
], and from the command line.
import torch
from transformers import pipeline
pipe = pipeline(
task="text-generation",
model="Qwen/Qwen1.5-MoE-A2.7B",
torch_dtype=torch.bfloat16,
device_map=0
)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me about the Qwen2 model family."},
]
outputs = pipe(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"][-1]['content'])
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen1.5-MoE-A2.7B-Chat",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat")
prompt = "Give me a short introduction to large language models."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
generated_ids = model.generate(
model_inputs.input_ids,
cache_implementation="static",
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```bash
transformers chat Qwen/Qwen1.5-MoE-A2.7B-Chat --torch_dtype auto --attn_implementation flash_attention_2
```
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses bitsandbytes to quantize the weights to 8-bits.
# pip install -U flash-attn --no-build-isolation
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_8bit=True
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat")
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen1.5-MoE-A2.7B-Chat",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config,
attn_implementation="flash_attention_2"
)
inputs = tokenizer("The Qwen2 model family is", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Qwen2MoeConfig
autodoc Qwen2MoeConfig
Qwen2MoeModel
autodoc Qwen2MoeModel - forward
Qwen2MoeForCausalLM
autodoc Qwen2MoeForCausalLM - forward
Qwen2MoeForSequenceClassification
autodoc Qwen2MoeForSequenceClassification - forward
Qwen2MoeForTokenClassification
autodoc Qwen2MoeForTokenClassification - forward
Qwen2MoeForQuestionAnswering
autodoc Qwen2MoeForQuestionAnswering - forward