
* doc: #36979 * doc: update hfoptions * add model checkpoints links * add model checkpoints links * update example output * update style #36979 * add pipeline tags * improve comments * Apply suggestions from code review Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * apply suggested changes * Apply suggestions from code review Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
5.7 KiB
MobileNet V2
MobileNet V2 improves performance on mobile devices with a more efficient architecture. It uses inverted residual blocks and linear bottlenecks to start with a smaller representation of the data, expands it for processing, and shrinks it again to reduce the number of computations. The model also removes non-linearities to maintain accuracy despite its simplified design. Like MobileNet V1, it uses depthwise separable convolutions for efficiency.
You can all the original MobileNet checkpoints under the Google organization.
Tip
Click on the MobileNet V2 models in the right sidebar for more examples of how to apply MobileNet to different vision tasks.
The examples below demonstrate how to classify an image with [Pipeline
] or the [AutoModel
] class.
import torch
from transformers import pipeline
pipeline = pipeline(
task="image-classification",
model="google/mobilenet_v2_1.4_224",
torch_dtype=torch.float16,
device=0
)
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageClassification, AutoImageProcessor
image_processor = AutoImageProcessor.from_pretrained(
"google/mobilenet_v2_1.4_224",
)
model = AutoModelForImageClassification.from_pretrained(
"google/mobilenet_v2_1.4_224",
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()
class_labels = model.config.id2label
predicted_class_label = class_labels[predicted_class_id]
print(f"The predicted class label is: {predicted_class_label}")
Notes
- Classification checkpoint names follow the pattern
mobilenet_v2_{depth_multiplier}_{resolution}
, likemobilenet_v2_1.4_224
.1.4
is the depth multiplier and224
is the image resolution. Segmentation checkpoint names follow the patterndeeplabv3_mobilenet_v2_{depth_multiplier}_{resolution}
. - While trained on images of a specific sizes, the model architecture works with images of different sizes (minimum 32x32). The [
MobileNetV2ImageProcessor
] handles the necessary preprocessing. - MobileNet is pretrained on ImageNet-1k, a dataset with 1000 classes. However, the model actually predicts 1001 classes. The additional class is an extra "background" class (index 0).
- The segmentation models use a DeepLabV3+ head which is often pretrained on datasets like PASCAL VOC.
- The original TensorFlow checkpoints determines the padding amount at inference because it depends on the input image size. To use the native PyTorch padding behavior, set
tf_padding=False
in [MobileNetV2Config
].from transformers import MobileNetV2Config config = MobileNetV2Config.from_pretrained("google/mobilenet_v2_1.4_224", tf_padding=True)
- The Transformers implementation does not support the following features.
- Uses global average pooling instead of the optional 7x7 average pooling with stride 2. For larger inputs, this gives a pooled output that is larger than a 1x1 pixel.
output_hidden_states=True
returns all intermediate hidden states. It is not possible to extract the output from specific layers for other downstream purposes.- Does not include the quantized models from the original checkpoints because they include "FakeQuantization" operations to unquantize the weights.
- For segmentation models, the final convolution layer of the backbone is computed even though the DeepLabV3+ head doesn't use it.
MobileNetV2Config
autodoc MobileNetV2Config
MobileNetV2FeatureExtractor
autodoc MobileNetV2FeatureExtractor - preprocess - post_process_semantic_segmentation
MobileNetV2ImageProcessor
autodoc MobileNetV2ImageProcessor - preprocess
MobileNetV2ImageProcessorFast
autodoc MobileNetV2ImageProcessorFast - preprocess - post_process_semantic_segmentation
MobileNetV2Model
autodoc MobileNetV2Model - forward
MobileNetV2ForImageClassification
autodoc MobileNetV2ForImageClassification - forward
MobileNetV2ForSemanticSegmentation
autodoc MobileNetV2ForSemanticSegmentation - forward