
* doc: #36979 * doc: update hfoptions * add model checkpoints links * add model checkpoints links * update example output * update style #36979 * add pipeline tags * improve comments * Apply suggestions from code review Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * apply suggested changes * Apply suggestions from code review Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
5.4 KiB
MobileNet V1
MobileNet V1 is a family of efficient convolutional neural networks optimized for on-device or embedded vision tasks. It achieves this efficiency by using depth-wise separable convolutions instead of standard convolutions. The architecture allows for easy trade-offs between latency and accuracy using two main hyperparameters, a width multiplier (alpha) and an image resolution multiplier.
You can all the original MobileNet checkpoints under the Google organization.
Tip
Click on the MobileNet V1 models in the right sidebar for more examples of how to apply MobileNet to different vision tasks.
The example below demonstrates how to classify an image with [Pipeline
] or the [AutoModel
] class.
import torch
from transformers import pipeline
pipeline = pipeline(
task="image-classification",
model="google/mobilenet_v1_1.0_224",
torch_dtype=torch.float16,
device=0
)
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageClassification, AutoImageProcessor
image_processor = AutoImageProcessor.from_pretrained(
"google/mobilenet_v1_1.0_224",
)
model = AutoModelForImageClassification.from_pretrained(
"google/mobilenet_v1_1.0_224",
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()
class_labels = model.config.id2label
predicted_class_label = class_labels[predicted_class_id]
print(f"The predicted class label is: {predicted_class_label}")
Notes
- Checkpoint names follow the pattern
mobilenet_v1_{depth_multiplier}_{resolution}
, likemobilenet_v1_1.0_224
.1.0
is the depth multiplier and224
is the image resolution. - While trained on images of a specific sizes, the model architecture works with images of different sizes (minimum 32x32). The [
MobileNetV1ImageProcessor
] handles the necessary preprocessing. - MobileNet is pretrained on ImageNet-1k, a dataset with 1000 classes. However, the model actually predicts 1001 classes. The additional class is an extra "background" class (index 0).
- The original TensorFlow checkpoints determines the padding amount at inference because it depends on the input image size. To use the native PyTorch padding behavior, set
tf_padding=False
in [MobileNetV1Config
].from transformers import MobileNetV1Config config = MobileNetV1Config.from_pretrained("google/mobilenet_v1_1.0_224", tf_padding=True)
- The Transformers implementation does not support the following features.
- Uses global average pooling instead of the optional 7x7 average pooling with stride 2. For larger inputs, this gives a pooled output that is larger than a 1x1 pixel.
- Does not support other
output_stride
values (fixed at 32). For smalleroutput_strides
, the original implementation uses dilated convolution to prevent spatial resolution from being reduced further. (which would require dilated convolutions). output_hidden_states=True
returns all intermediate hidden states. It is not possible to extract the output from specific layers for other downstream purposes.- Does not include the quantized models from the original checkpoints because they include "FakeQuantization" operations to unquantize the weights.
MobileNetV1Config
autodoc MobileNetV1Config
MobileNetV1FeatureExtractor
autodoc MobileNetV1FeatureExtractor - preprocess
MobileNetV1ImageProcessor
autodoc MobileNetV1ImageProcessor - preprocess
MobileNetV1ImageProcessorFast
autodoc MobileNetV1ImageProcessorFast - preprocess
MobileNetV1Model
autodoc MobileNetV1Model - forward
MobileNetV1ForImageClassification
autodoc MobileNetV1ForImageClassification - forward