transformers/docs/source/en/model_doc/granitemoeshared.md
Quentin Gallouédec de24fb63ed
Use HF papers (#38184)
* Use hf papers

* Hugging Face papers

* doi to hf papers

* style
2025-06-13 11:07:09 +00:00

2.3 KiB

GraniteMoeShared

Overview

The GraniteMoe model was proposed in Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler by Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adriana Meza Soria, David D. Cox and Rameswar Panda.

Additionally this class GraniteMoeSharedModel adds shared experts for Moe.

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "ibm-research/moe-7b-1b-active-shared-experts"
tokenizer = AutoTokenizer.from_pretrained(model_path)

# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
model.eval()

# change input text as desired
prompt = "Write a code to find the maximum value in a list of numbers."

# tokenize the text
input_tokens = tokenizer(prompt, return_tensors="pt")
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
    print(i)

This HF implementation is contributed by Mayank Mishra, Shawn Tan and Sukriti Sharma.

GraniteMoeSharedConfig

autodoc GraniteMoeSharedConfig

GraniteMoeSharedModel

autodoc GraniteMoeSharedModel - forward

GraniteMoeSharedForCausalLM

autodoc GraniteMoeSharedForCausalLM - forward