
* Update VITS model card * Update docs/source/en/model_doc/vits.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/vits.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/vits.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/vits.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update vits.md --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
5.1 KiB
VITS
VITS (Variational Inference with adversarial learning for end-to-end Text-to-Speech) is a end-to-end speech synthesis model, simplifying the traditional two-stage text-to-speech (TTS) systems. It's unique because it directly synthesizes speech from text using variational inference, adversarial learning, and normalizing flows to produce natural and expressive speech with diverse rhythms and intonations.
You can find all the original VITS checkpoints under the AI at Meta organization.
Tip
Click on the VITS models in the right sidebar for more examples of how to apply VITS.
The example below demonstrates how to generate text based on an image with [Pipeline
] or the [AutoModel
] class.
import torch
from transformers import pipeline, set_seed
from scipy.io.wavfile import write
set_seed(555)
pipe = pipeline(
task="text-to-speech",
model="facebook/mms-tts-eng",
torch_dtype=torch.float16,
device=0
)
speech = pipe("Hello, my dog is cute")
# Extract audio data and sampling rate
audio_data = speech["audio"]
sampling_rate = speech["sampling_rate"]
# Save as WAV file
write("hello.wav", sampling_rate, audio_data.squeeze())
import torch
import scipy
from IPython.display import Audio
from transformers import AutoTokenizer, VitsModel, set_seed
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
model = VitsModel.from_pretrained("facebook/mms-tts-eng", torch_dtype=torch.float16).to("cuda")
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt").to("cuda")
set_seed(555)
with torch.no_grad():
outputs = model(**inputs)
waveform = outputs.waveform[0]
scipy.io.wavfile.write("hello.wav", rate=model.config.sampling_rate, data=waveform)
# display in Colab notebook
Audio(waveform, rate=model.config.sampling_rate)
Notes
-
Set a seed for reproducibility because VITS synthesizes speech non-deterministically.
-
For languages with non-Roman alphabets (Korean, Arabic, etc.), install the uroman package to preprocess the text inputs to the Roman alphabet. You can check if the tokenizer requires uroman as shown below.
# pip install -U uroman from transformers import VitsTokenizer tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng") print(tokenizer.is_uroman)
If your language requires uroman, the tokenizer automatically applies it to the text inputs. Python >= 3.10 doesn't require any additional preprocessing steps. For Python < 3.10, follow the steps below.
git clone https://github.com/isi-nlp/uroman.git cd uroman export UROMAN=$(pwd)
Create a function to preprocess the inputs. You can either use the bash variable
UROMAN
or pass the directory path directly to the function.import torch from transformers import VitsTokenizer, VitsModel, set_seed import os import subprocess tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-kor") model = VitsModel.from_pretrained("facebook/mms-tts-kor") def uromanize(input_string, uroman_path): """Convert non-Roman strings to Roman using the `uroman` perl package.""" script_path = os.path.join(uroman_path, "bin", "uroman.pl") command = ["perl", script_path] process = subprocess.Popen(command, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Execute the perl command stdout, stderr = process.communicate(input=input_string.encode()) if process.returncode != 0: raise ValueError(f"Error {process.returncode}: {stderr.decode()}") # Return the output as a string and skip the new-line character at the end return stdout.decode()[:-1] text = "이봐 무슨 일이야" uromanized_text = uromanize(text, uroman_path=os.environ["UROMAN"]) inputs = tokenizer(text=uromanized_text, return_tensors="pt") set_seed(555) # make deterministic with torch.no_grad(): outputs = model(inputs["input_ids"]) waveform = outputs.waveform[0]
VitsConfig
autodoc VitsConfig
VitsTokenizer
autodoc VitsTokenizer
- call
- save_vocabulary
VitsModel
autodoc VitsModel
- forward