transformers/docs/source/en/model_doc/roberta-prelayernorm.md
Steven Liu c0f8d055ce
[docs] Redesign (#31757)
* toctree

* not-doctested.txt

* collapse sections

* feedback

* update

* rewrite get started sections

* fixes

* fix

* loading models

* fix

* customize models

* share

* fix link

* contribute part 1

* contribute pt 2

* fix toctree

* tokenization pt 1

* Add new model (#32615)

* v1 - working version

* fix

* fix

* fix

* fix

* rename to correct name

* fix title

* fixup

* rename files

* fix

* add copied from on tests

* rename to `FalconMamba` everywhere and fix bugs

* fix quantization + accelerate

* fix copies

* add `torch.compile` support

* fix tests

* fix tests and add slow tests

* copies on config

* merge the latest changes

* fix tests

* add few lines about instruct

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* fix tests

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* "to be not" -> "not to be" (#32636)

* "to be not" -> "not to be"

* Update sam.md

* Update trainer.py

* Update modeling_utils.py

* Update test_modeling_utils.py

* Update test_modeling_utils.py

* fix hfoption tag

* tokenization pt. 2

* image processor

* fix toctree

* backbones

* feature extractor

* fix file name

* processor

* update not-doctested

* update

* make style

* fix toctree

* revision

* make fixup

* fix toctree

* fix

* make style

* fix hfoption tag

* pipeline

* pipeline gradio

* pipeline web server

* add pipeline

* fix toctree

* not-doctested

* prompting

* llm optims

* fix toctree

* fixes

* cache

* text generation

* fix

* chat pipeline

* chat stuff

* xla

* torch.compile

* cpu inference

* toctree

* gpu inference

* agents and tools

* gguf/tiktoken

* finetune

* toctree

* trainer

* trainer pt 2

* optims

* optimizers

* accelerate

* parallelism

* fsdp

* update

* distributed cpu

* hardware training

* gpu training

* gpu training 2

* peft

* distrib debug

* deepspeed 1

* deepspeed 2

* chat toctree

* quant pt 1

* quant pt 2

* fix toctree

* fix

* fix

* quant pt 3

* quant pt 4

* serialization

* torchscript

* scripts

* tpu

* review

* model addition timeline

* modular

* more reviews

* reviews

* fix toctree

* reviews reviews

* continue reviews

* more reviews

* modular transformers

* more review

* zamba2

* fix

* all frameworks

* pytorch

* supported model frameworks

* flashattention

* rm check_table

* not-doctested.txt

* rm check_support_list.py

* feedback

* updates/feedback

* review

* feedback

* fix

* update

* feedback

* updates

* update

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2025-03-03 10:33:46 -08:00

8.1 KiB

RoBERTa-PreLayerNorm

PyTorch TensorFlow Flax

Overview

The RoBERTa-PreLayerNorm model was proposed in fairseq: A Fast, Extensible Toolkit for Sequence Modeling by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli. It is identical to using the --encoder-normalize-before flag in fairseq.

The abstract from the paper is the following:

fairseq is an open-source sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling, and other text generation tasks. The toolkit is based on PyTorch and supports distributed training across multiple GPUs and machines. We also support fast mixed-precision training and inference on modern GPUs.

This model was contributed by andreasmaden. The original code can be found here.

Usage tips

  • The implementation is the same as Roberta except instead of using Add and Norm it does Norm and Add. Add and Norm refers to the Addition and LayerNormalization as described in Attention Is All You Need.
  • This is identical to using the --encoder-normalize-before flag in fairseq.

Resources

RobertaPreLayerNormConfig

autodoc RobertaPreLayerNormConfig

RobertaPreLayerNormModel

autodoc RobertaPreLayerNormModel - forward

RobertaPreLayerNormForCausalLM

autodoc RobertaPreLayerNormForCausalLM - forward

RobertaPreLayerNormForMaskedLM

autodoc RobertaPreLayerNormForMaskedLM - forward

RobertaPreLayerNormForSequenceClassification

autodoc RobertaPreLayerNormForSequenceClassification - forward

RobertaPreLayerNormForMultipleChoice

autodoc RobertaPreLayerNormForMultipleChoice - forward

RobertaPreLayerNormForTokenClassification

autodoc RobertaPreLayerNormForTokenClassification - forward

RobertaPreLayerNormForQuestionAnswering

autodoc RobertaPreLayerNormForQuestionAnswering - forward

TFRobertaPreLayerNormModel

autodoc TFRobertaPreLayerNormModel - call

TFRobertaPreLayerNormForCausalLM

autodoc TFRobertaPreLayerNormForCausalLM - call

TFRobertaPreLayerNormForMaskedLM

autodoc TFRobertaPreLayerNormForMaskedLM - call

TFRobertaPreLayerNormForSequenceClassification

autodoc TFRobertaPreLayerNormForSequenceClassification - call

TFRobertaPreLayerNormForMultipleChoice

autodoc TFRobertaPreLayerNormForMultipleChoice - call

TFRobertaPreLayerNormForTokenClassification

autodoc TFRobertaPreLayerNormForTokenClassification - call

TFRobertaPreLayerNormForQuestionAnswering

autodoc TFRobertaPreLayerNormForQuestionAnswering - call

FlaxRobertaPreLayerNormModel

autodoc FlaxRobertaPreLayerNormModel - call

FlaxRobertaPreLayerNormForCausalLM

autodoc FlaxRobertaPreLayerNormForCausalLM - call

FlaxRobertaPreLayerNormForMaskedLM

autodoc FlaxRobertaPreLayerNormForMaskedLM - call

FlaxRobertaPreLayerNormForSequenceClassification

autodoc FlaxRobertaPreLayerNormForSequenceClassification - call

FlaxRobertaPreLayerNormForMultipleChoice

autodoc FlaxRobertaPreLayerNormForMultipleChoice - call

FlaxRobertaPreLayerNormForTokenClassification

autodoc FlaxRobertaPreLayerNormForTokenClassification - call

FlaxRobertaPreLayerNormForQuestionAnswering

autodoc FlaxRobertaPreLayerNormForQuestionAnswering - call