mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-13 09:40:06 +06:00

* toctree * not-doctested.txt * collapse sections * feedback * update * rewrite get started sections * fixes * fix * loading models * fix * customize models * share * fix link * contribute part 1 * contribute pt 2 * fix toctree * tokenization pt 1 * Add new model (#32615) * v1 - working version * fix * fix * fix * fix * rename to correct name * fix title * fixup * rename files * fix * add copied from on tests * rename to `FalconMamba` everywhere and fix bugs * fix quantization + accelerate * fix copies * add `torch.compile` support * fix tests * fix tests and add slow tests * copies on config * merge the latest changes * fix tests * add few lines about instruct * Apply suggestions from code review Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * fix tests --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * "to be not" -> "not to be" (#32636) * "to be not" -> "not to be" * Update sam.md * Update trainer.py * Update modeling_utils.py * Update test_modeling_utils.py * Update test_modeling_utils.py * fix hfoption tag * tokenization pt. 2 * image processor * fix toctree * backbones * feature extractor * fix file name * processor * update not-doctested * update * make style * fix toctree * revision * make fixup * fix toctree * fix * make style * fix hfoption tag * pipeline * pipeline gradio * pipeline web server * add pipeline * fix toctree * not-doctested * prompting * llm optims * fix toctree * fixes * cache * text generation * fix * chat pipeline * chat stuff * xla * torch.compile * cpu inference * toctree * gpu inference * agents and tools * gguf/tiktoken * finetune * toctree * trainer * trainer pt 2 * optims * optimizers * accelerate * parallelism * fsdp * update * distributed cpu * hardware training * gpu training * gpu training 2 * peft * distrib debug * deepspeed 1 * deepspeed 2 * chat toctree * quant pt 1 * quant pt 2 * fix toctree * fix * fix * quant pt 3 * quant pt 4 * serialization * torchscript * scripts * tpu * review * model addition timeline * modular * more reviews * reviews * fix toctree * reviews reviews * continue reviews * more reviews * modular transformers * more review * zamba2 * fix * all frameworks * pytorch * supported model frameworks * flashattention * rm check_table * not-doctested.txt * rm check_support_list.py * feedback * updates/feedback * review * feedback * fix * update * feedback * updates * update --------- Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
204 lines
6.1 KiB
Markdown
204 lines
6.1 KiB
Markdown
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||
the License. You may obtain a copy of the License at
|
||
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
specific language governing permissions and limitations under the License.
|
||
|
||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||
rendered properly in your Markdown viewer.
|
||
|
||
-->
|
||
|
||
# SmolVLM
|
||
|
||
<div class="flex flex-wrap space-x-1">
|
||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||
</div>
|
||
|
||
## Overview
|
||
SmolVLM2 is an adaptation of the Idefics3 model with two main differences:
|
||
|
||
- It uses SmolLM2 for the text model.
|
||
- It supports multi-image and video inputs
|
||
|
||
## Usage tips
|
||
|
||
Input images are processed either by upsampling (if resizing is enabled) or at their original resolution. The resizing behavior depends on two parameters: do_resize and size.
|
||
|
||
Videos should not be upsampled.
|
||
|
||
If `do_resize` is set to `True`, the model resizes images so that the longest edge is 4*512 pixels by default.
|
||
The default resizing behavior can be customized by passing a dictionary to the `size` parameter. For example, `{"longest_edge": 4 * 512}` is the default, but you can change it to a different value if needed.
|
||
|
||
Here’s how to control resizing and set a custom size:
|
||
```python
|
||
image_processor = SmolVLMImageProcessor(do_resize=True, size={"longest_edge": 2 * 512}, max_image_size=512)
|
||
```
|
||
|
||
Additionally, the `max_image_size` parameter, which controls the size of each square patch the image is decomposed into, is set to 512 by default but can be adjusted as needed. After resizing (if applicable), the image processor decomposes the images into square patches based on the `max_image_size` parameter.
|
||
|
||
This model was contributed by [orrzohar](https://huggingface.co/orrzohar).
|
||
|
||
|
||
|
||
## Usage example
|
||
|
||
### Single Media inference
|
||
|
||
The model can accept both images and videos as input, but you should use only one of the modalities at a time. Here's an example code for that.
|
||
|
||
```python
|
||
import torch
|
||
from transformers import AutoProcessor, AutoModelForImageTextToText
|
||
|
||
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct")
|
||
model = AutoModelForImageTextToText.from_pretrained(
|
||
"HuggingFaceTB/SmolVLM2-256M-Video-Instruct",
|
||
torch_dtype=torch.bfloat16,
|
||
device_map="cuda"
|
||
)
|
||
|
||
conversation = [
|
||
{
|
||
"role": "user",
|
||
"content":[
|
||
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
|
||
{"type": "text", "text": "Describe this image."}
|
||
]
|
||
}
|
||
]
|
||
|
||
inputs = processor.apply_chat_template(
|
||
conversation,
|
||
add_generation_prompt=True,
|
||
tokenize=True,
|
||
return_dict=True,
|
||
return_tensors="pt",
|
||
).to(model.device, dtype=torch.bfloat16)
|
||
|
||
output_ids = model.generate(**inputs, max_new_tokens=128)
|
||
generated_texts = processor.batch_decode(output_ids, skip_special_tokens=True)
|
||
print(generated_texts)
|
||
|
||
|
||
# Video
|
||
conversation = [
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "video", "path": "/path/to/video.mp4"},
|
||
{"type": "text", "text": "Describe this video in detail"}
|
||
]
|
||
},
|
||
]
|
||
|
||
inputs = processor.apply_chat_template(
|
||
conversation,
|
||
add_generation_prompt=True,
|
||
tokenize=True,
|
||
return_dict=True,
|
||
return_tensors="pt",
|
||
).to(model.device, dtype=torch.bfloat16)
|
||
|
||
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=100)
|
||
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
||
print(generated_texts[0])
|
||
```
|
||
|
||
### Batch Mixed Media Inference
|
||
|
||
The model can batch inputs composed of several images/videos and text. Here is an example.
|
||
|
||
```python
|
||
import torch
|
||
from transformers import AutoProcessor, AutoModelForImageTextToText
|
||
|
||
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct")
|
||
model = AutoModelForImageTextToText.from_pretrained(
|
||
"HuggingFaceTB/SmolVLM2-256M-Video-Instruct",
|
||
torch_dtype=torch.bfloat16,
|
||
device_map="cuda"
|
||
)
|
||
|
||
# Conversation for the first image
|
||
conversation1 = [
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "image", "path": "/path/to/image.jpg"},
|
||
{"type": "text", "text": "Describe this image."}
|
||
]
|
||
}
|
||
]
|
||
|
||
# Conversation with two images
|
||
conversation2 = [
|
||
{
|
||
"role": "user",
|
||
"content": [
|
||
{"type": "image", "path": "/path/to/image.jpg"},
|
||
{"type": "image", "path": "/path/to/image.jpg"},
|
||
{"type": "text", "text": "What is written in the pictures?"}
|
||
]
|
||
}
|
||
]
|
||
|
||
# Conversation with pure text
|
||
conversation3 = [
|
||
{"role": "user","content": "who are you?"}
|
||
]
|
||
|
||
|
||
conversations = [conversation1, conversation2, conversation3]
|
||
inputs = processor.apply_chat_template(
|
||
conversation,
|
||
add_generation_prompt=True,
|
||
tokenize=True,
|
||
return_dict=True,
|
||
return_tensors="pt",
|
||
).to(model.device, dtype=torch.bfloat16)
|
||
|
||
generated_ids = model.generate(**inputs, do_sample=False, max_new_tokens=100)
|
||
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
||
print(generated_texts[0])
|
||
```
|
||
|
||
## SmolVLMConfig
|
||
|
||
[[autodoc]] SmolVLMConfig
|
||
|
||
## SmolVLMVisionConfig
|
||
|
||
[[autodoc]] SmolVLMVisionConfig
|
||
|
||
## Idefics3VisionTransformer
|
||
|
||
[[autodoc]] SmolVLMVisionTransformer
|
||
|
||
## SmolVLMModel
|
||
|
||
[[autodoc]] SmolVLMModel
|
||
- forward
|
||
|
||
## SmolVLMForConditionalGeneration
|
||
|
||
[[autodoc]] SmolVLMForConditionalGeneration
|
||
- forward
|
||
|
||
|
||
## SmolVLMImageProcessor
|
||
[[autodoc]] SmolVLMImageProcessor
|
||
- preprocess
|
||
|
||
|
||
## SmolVLMProcessor
|
||
[[autodoc]] SmolVLMProcessor
|
||
- __call__
|