mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-16 02:58:23 +06:00

* add note on sigopt * update * Update docs/source/en/hpo_train.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
171 lines
7.1 KiB
Markdown
171 lines
7.1 KiB
Markdown
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
# Hyperparameter search
|
|
|
|
Hyperparameter search discovers an optimal set of hyperparameters that produces the best model performance. [`Trainer`] supports several hyperparameter search backends - [Optuna](https://optuna.readthedocs.io/en/stable/index.html), [SigOpt](https://docs.sigopt.com/), [Weights & Biases](https://docs.wandb.ai/), [Ray Tune](https://docs.ray.io/en/latest/tune/index.html) - through [`~Trainer.hyperparameter_search`] to optimize an objective or even multiple objectives.
|
|
|
|
This guide will go over how to set up a hyperparameter search for each of the backends.
|
|
|
|
> [!WARNING]
|
|
> [SigOpt](https://github.com/sigopt/sigopt-server) is in public archive mode and is no longer actively maintained. Try using Optuna, Weights & Biases or Ray Tune instead.
|
|
|
|
```bash
|
|
pip install optuna/sigopt/wandb/ray[tune]
|
|
```
|
|
|
|
To use [`~Trainer.hyperparameter_search`], you need to create a `model_init` function. This function includes basic model information (arguments and configuration) because it needs to be reinitialized for each search trial in the run.
|
|
|
|
> [!WARNING]
|
|
> The `model_init` function is incompatible with the [optimizers](./main_classes/trainer#transformers.Trainer.optimizers) parameter. Subclass [`Trainer`] and override the [`~Trainer.create_optimizer_and_scheduler`] method to create a custom optimizer and scheduler.
|
|
|
|
An example `model_init` function is shown below.
|
|
|
|
```py
|
|
def model_init(trial):
|
|
return AutoModelForSequenceClassification.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=True if model_args.use_auth_token else None,
|
|
)
|
|
```
|
|
|
|
Pass `model_init` to [`Trainer`] along with everything else you need for training. Then you can call [`~Trainer.hyperparameter_search`] to start the search.
|
|
|
|
[`~Trainer.hyperparameter_search`] accepts a [direction](./main_classes/trainer#transformers.Trainer.hyperparameter_search.direction) parameter to specify whether to minimize, maximize, or minimize and maximize multiple objectives. You'll also need to set the [backend](./main_classes/trainer#transformers.Trainer.hyperparameter_search.backend) you're using, an [object](./main_classes/trainer#transformers.Trainer.hyperparameter_search.hp_space) containing the hyperparameters to optimize for, the [number of trials](./main_classes/trainer#transformers.Trainer.hyperparameter_search.n_trials) to run, and a [compute_objective](./main_classes/trainer#transformers.Trainer.hyperparameter_search.compute_objective) to return the objective values.
|
|
|
|
> [!TIP]
|
|
> If [compute_objective](./main_classes/trainer#transformers.Trainer.hyperparameter_search.compute_objective) isn't defined, the default [compute_objective](./main_classes/trainer#transformers.Trainer.hyperparameter_search.compute_objective) is called which is the sum of an evaluation metric like F1.
|
|
|
|
```py
|
|
from transformers import Trainer
|
|
|
|
trainer = Trainer(
|
|
model=None,
|
|
args=training_args,
|
|
train_dataset=small_train_dataset,
|
|
eval_dataset=small_eval_dataset,
|
|
compute_metrics=compute_metrics,
|
|
processing_class=tokenizer,
|
|
model_init=model_init,
|
|
data_collator=data_collator,
|
|
)
|
|
trainer.hyperparameter_search(...)
|
|
```
|
|
|
|
The following examples demonstrate how to perform a hyperparameter search for the learning rate and training batch size using the different backends.
|
|
|
|
<hfoptions id="backends">
|
|
<hfoption id="Optuna">
|
|
|
|
[Optuna](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py) optimizes categories, integers, and floats.
|
|
|
|
```py
|
|
def optuna_hp_space(trial):
|
|
return {
|
|
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
|
|
"per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]),
|
|
}
|
|
|
|
best_trials = trainer.hyperparameter_search(
|
|
direction=["minimize", "maximize"],
|
|
backend="optuna",
|
|
hp_space=optuna_hp_space,
|
|
n_trials=20,
|
|
compute_objective=compute_objective,
|
|
)
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="Ray Tune">
|
|
|
|
[Ray Tune](https://docs.ray.io/en/latest/tune/api/search_space.html) optimizes floats, integers, and categorical parameters. It also offers multiple sampling distributions for each parameter such as uniform and log-uniform.
|
|
|
|
```py
|
|
def ray_hp_space(trial):
|
|
return {
|
|
"learning_rate": tune.loguniform(1e-6, 1e-4),
|
|
"per_device_train_batch_size": tune.choice([16, 32, 64, 128]),
|
|
}
|
|
|
|
best_trials = trainer.hyperparameter_search(
|
|
direction=["minimize", "maximize"],
|
|
backend="ray",
|
|
hp_space=ray_hp_space,
|
|
n_trials=20,
|
|
compute_objective=compute_objective,
|
|
)
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="SigOpt">
|
|
|
|
[SigOpt](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter) optimizes double, integer, and categorical parameters.
|
|
|
|
```py
|
|
def sigopt_hp_space(trial):
|
|
return [
|
|
{"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"},
|
|
{
|
|
"categorical_values": ["16", "32", "64", "128"],
|
|
"name": "per_device_train_batch_size",
|
|
"type": "categorical",
|
|
},
|
|
]
|
|
|
|
best_trials = trainer.hyperparameter_search(
|
|
direction=["minimize", "maximize"],
|
|
backend="sigopt",
|
|
hp_space=sigopt_hp_space,
|
|
n_trials=20,
|
|
compute_objective=compute_objective,
|
|
)
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="Weights & Biases">
|
|
|
|
[Weights & Biases](https://docs.wandb.ai/guides/sweeps/sweep-config-keys) also optimizes integers, floats, and categorical parameters. It also includes support for different search strategies and distribution options.
|
|
|
|
```py
|
|
def wandb_hp_space(trial):
|
|
return {
|
|
"method": "random",
|
|
"metric": {"name": "objective", "goal": "minimize"},
|
|
"parameters": {
|
|
"learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
|
|
"per_device_train_batch_size": {"values": [16, 32, 64, 128]},
|
|
},
|
|
}
|
|
|
|
best_trials = trainer.hyperparameter_search(
|
|
direction=["minimize", "maximize"],
|
|
backend="wandb",
|
|
hp_space=wandb_hp_space,
|
|
n_trials=20,
|
|
compute_objective=compute_objective,
|
|
)
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
## Distributed Data Parallel
|
|
|
|
[`Trainer`] only supports hyperparameter search for distributed data parallel (DDP) on the Optuna and SigOpt backends. Only the rank-zero process is used to generate the search trial, and the resulting parameters are passed along to the other ranks.
|