mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-24 06:48:58 +06:00
41 lines
1.5 KiB
Markdown
41 lines
1.5 KiB
Markdown
---
|
||
language: fr
|
||
---
|
||
|
||
# tf-allociné
|
||
|
||
A french sentiment analysis model, based on [CamemBERT](https://camembert-model.fr/), and finetuned on a large-scale dataset scraped from [Allociné.fr](http://www.allocine.fr/) user reviews.
|
||
|
||
## Results
|
||
|
||
| Validation Accuracy | Validation F1-Score | Test Accuracy | Test F1-Score |
|
||
|--------------------:| -------------------:| -------------:|--------------:|
|
||
| 97.39 | 97.36 | 97.44 | 97.34 |
|
||
|
||
The dataset and the evaluation code are available on [this repo](https://github.com/TheophileBlard/french-sentiment-analysis-with-bert).
|
||
|
||
## Usage
|
||
|
||
```python
|
||
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
||
from transformers import pipeline
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained("tblard/tf-allocine")
|
||
model = TFAutoModelForSequenceClassification.from_pretrained("tblard/tf-allocine")
|
||
|
||
nlp = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
|
||
|
||
print(nlp("Alad'2 est clairement le meilleur film de l'année 2018.")) # POSITIVE
|
||
print(nlp("Juste whoaaahouuu !")) # POSITIVE
|
||
print(nlp("NUL...A...CHIER ! FIN DE TRANSMISSION.")) # NEGATIVE
|
||
print(nlp("Je m'attendais à mieux de la part de Franck Dubosc !")) # NEGATIVE
|
||
```
|
||
|
||
## Author
|
||
|
||
Théophile Blard – :email: theophile.blard@gmail.com
|
||
|
||
If you use this work (code, model or dataset), please cite as:
|
||
|
||
> Théophile Blard, French sentiment analysis with BERT, (2020), GitHub repository, <https://github.com/TheophileBlard/french-sentiment-analysis-with-bert>
|