transformers/examples/seq2seq/test_bash_script.py
2020-08-31 13:48:26 -04:00

187 lines
7.2 KiB
Python

import argparse
import os
import sys
import tempfile
from pathlib import Path
from unittest.mock import patch
import pytest
import pytorch_lightning as pl
import timeout_decorator
import torch
from transformers import BartForConditionalGeneration, MarianMTModel
from transformers.testing_utils import slow
from .distillation import BartSummarizationDistiller, distill_main
from .finetune import SummarizationModule, main
from .test_seq2seq_examples import CUDA_AVAILABLE, MBART_TINY
from .utils import load_json
MODEL_NAME = MBART_TINY
# TODO(SS): MODEL_NAME = "sshleifer/student_mbart_en_ro_1_1"
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
@slow
@pytest.mark.skipif(not CUDA_AVAILABLE, reason="too slow to run on CPU")
def test_model_download():
"""This warms up the cache so that we can time the next test without including download time, which varies between machines."""
BartForConditionalGeneration.from_pretrained(MODEL_NAME)
MarianMTModel.from_pretrained(MARIAN_MODEL)
@timeout_decorator.timeout(120)
@slow
@pytest.mark.skipif(not CUDA_AVAILABLE, reason="too slow to run on CPU")
def test_train_mbart_cc25_enro_script():
data_dir = "examples/seq2seq/test_data/wmt_en_ro"
env_vars_to_replace = {
"--fp16_opt_level=O1": "",
"$MAX_LEN": 128,
"$BS": 4,
"$GAS": 1,
"$ENRO_DIR": data_dir,
"facebook/mbart-large-cc25": MODEL_NAME,
# Download is 120MB in previous test.
"val_check_interval=0.25": "val_check_interval=1.0",
}
# Clean up bash script
bash_script = Path("examples/seq2seq/train_mbart_cc25_enro.sh").open().read().split("finetune.py")[1].strip()
bash_script = bash_script.replace("\\\n", "").strip().replace('"$@"', "")
for k, v in env_vars_to_replace.items():
bash_script = bash_script.replace(k, str(v))
output_dir = tempfile.mkdtemp(prefix="output_mbart")
bash_script = bash_script.replace("--fp16 ", "")
testargs = (
["finetune.py"]
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
"--gpus=1",
"--learning_rate=3e-1",
"--warmup_steps=0",
"--val_check_interval=1.0",
"--tokenizer_name=facebook/mbart-large-en-ro",
]
)
with patch.object(sys, "argv", testargs):
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
args.do_predict = False
# assert args.gpus == gpus THIS BREAKS for multigpu
model = main(args)
# Check metrics
metrics = load_json(model.metrics_save_path)
first_step_stats = metrics["val"][0]
last_step_stats = metrics["val"][-1]
assert len(metrics["val"]) == (args.max_epochs / args.val_check_interval) + 1 # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
# check lightning ckpt can be loaded and has a reasonable statedict
contents = os.listdir(output_dir)
ckpt_path = [x for x in contents if x.endswith(".ckpt")][0]
full_path = os.path.join(args.output_dir, ckpt_path)
ckpt = torch.load(full_path, map_location="cpu")
expected_key = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight"
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.float32
# TODO(SS): turn on args.do_predict when PL bug fixed.
if args.do_predict:
contents = {os.path.basename(p) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics["test"]) == 1
@timeout_decorator.timeout(600)
@slow
@pytest.mark.skipif(not CUDA_AVAILABLE, reason="too slow to run on CPU")
def test_opus_mt_distill_script():
data_dir = "examples/seq2seq/test_data/wmt_en_ro"
env_vars_to_replace = {
"--fp16_opt_level=O1": "",
"$MAX_LEN": 128,
"$BS": 16,
"$GAS": 1,
"$ENRO_DIR": data_dir,
"$m": "sshleifer/student_marian_en_ro_6_1",
"val_check_interval=0.25": "val_check_interval=1.0",
}
# Clean up bash script
bash_script = (
Path("examples/seq2seq/distil_marian_no_teacher.sh").open().read().split("distillation.py")[1].strip()
)
bash_script = bash_script.replace("\\\n", "").strip().replace('"$@"', "")
bash_script = bash_script.replace("--fp16 ", " ")
for k, v in env_vars_to_replace.items():
bash_script = bash_script.replace(k, str(v))
output_dir = tempfile.mkdtemp(prefix="marian_output")
bash_script = bash_script.replace("--fp16", "")
epochs = 6
testargs = (
["distillation.py"]
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
"--gpus=1",
"--learning_rate=1e-3",
f"--num_train_epochs={epochs}",
"--warmup_steps=10",
"--val_check_interval=1.0",
]
)
with patch.object(sys, "argv", testargs):
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = BartSummarizationDistiller.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
args.do_predict = False
# assert args.gpus == gpus THIS BREAKS for multigpu
model = distill_main(args)
# Check metrics
metrics = load_json(model.metrics_save_path)
first_step_stats = metrics["val"][0]
last_step_stats = metrics["val"][-1]
assert len(metrics["val"]) == (args.max_epochs / args.val_check_interval) + 1 # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
# check lightning ckpt can be loaded and has a reasonable statedict
contents = os.listdir(output_dir)
ckpt_path = [x for x in contents if x.endswith(".ckpt")][0]
full_path = os.path.join(args.output_dir, ckpt_path)
ckpt = torch.load(full_path, map_location="cpu")
expected_key = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight"
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.float32
# TODO(SS): turn on args.do_predict when PL bug fixed.
if args.do_predict:
contents = {os.path.basename(p) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics["test"]) == 1