Marian distill scripts + integration test (#6799)

This commit is contained in:
Sam Shleifer 2020-08-31 13:48:26 -04:00 committed by GitHub
parent 02d09c8fcc
commit 61b7ba93f5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 132 additions and 14 deletions

View File

@ -0,0 +1,21 @@
#!/usr/bin/env bash
export PYTHONPATH="../":"${PYTHONPATH}"
export WANDB_PROJECT=dmar
# export MAX_LEN=128
python distillation.py \
--learning_rate=3e-4 \
--do_train \
--do_predict \
--fp16 \
--val_check_interval 0.25 \
--teacher Helsinki-NLP/opus-mt-en-ro --data_dir $ENRO_DIR \
--max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \
--student_decoder_layers 3 --student_encoder_layers 6 \
--freeze_encoder --freeze_embeds \
--model_name_or_path IGNORED \
--alpha_hid=3. \
--train_batch_size=$BS --eval_batch_size=$BS \
--tokenizer_name Helsinki-NLP/opus-mt-en-ro \
--warmup_steps 500 --sortish_sampler --logger_name wandb \
--gpus 1 --fp16_opt_level O1 --task translation \
"$@"

View File

@ -0,0 +1,17 @@
#!/usr/bin/env bash
export PYTHONPATH="../":"${PYTHONPATH}"
export WANDB_PROJECT=dmar
python distillation.py \
--learning_rate=3e-4 \
--do_train \
--do_predict \
--fp16 --no_teacher \
--val_check_interval 0.25 \
--data_dir $ENRO_DIR \
--max_source_length $MAX_LEN --max_target_length $MAX_LEN --val_max_target_length $MAX_LEN --test_max_target_length $MAX_LEN \
--freeze_encoder --freeze_embeds \
--train_batch_size=$BS --eval_batch_size=$BS \
--tokenizer_name $m --model_name_or_path $m \
--warmup_steps 500 --sortish_sampler --logger_name wandb \
--gpus 1 --fp16_opt_level=O1 --task translation \
"$@"

View File

@ -10,9 +10,10 @@ import pytorch_lightning as pl
import timeout_decorator
import torch
from transformers import BartForConditionalGeneration
from transformers import BartForConditionalGeneration, MarianMTModel
from transformers.testing_utils import slow
from .distillation import BartSummarizationDistiller, distill_main
from .finetune import SummarizationModule, main
from .test_seq2seq_examples import CUDA_AVAILABLE, MBART_TINY
from .utils import load_json
@ -20,6 +21,7 @@ from .utils import load_json
MODEL_NAME = MBART_TINY
# TODO(SS): MODEL_NAME = "sshleifer/student_mbart_en_ro_1_1"
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
@slow
@ -27,6 +29,7 @@ MODEL_NAME = MBART_TINY
def test_model_download():
"""This warms up the cache so that we can time the next test without including download time, which varies between machines."""
BartForConditionalGeneration.from_pretrained(MODEL_NAME)
MarianMTModel.from_pretrained(MARIAN_MODEL)
@timeout_decorator.timeout(120)
@ -35,34 +38,30 @@ def test_model_download():
def test_train_mbart_cc25_enro_script():
data_dir = "examples/seq2seq/test_data/wmt_en_ro"
env_vars_to_replace = {
"$MAX_LEN": 200,
"--fp16_opt_level=O1": "",
"$MAX_LEN": 128,
"$BS": 4,
"$GAS": 1,
"$ENRO_DIR": data_dir,
"facebook/mbart-large-cc25": MODEL_NAME,
# 1 encoder and 1 decoder layer from finetuned mbart en-ro. Should be able to start >0 and improve quickly.
# Download is 600MB in previous test.
# Download is 120MB in previous test.
"val_check_interval=0.25": "val_check_interval=1.0",
}
# Clean up bash script
bash_script = Path("examples/seq2seq/train_mbart_cc25_enro.sh").open().read().split("finetune.py")[1].strip()
bash_script = bash_script.replace("\\\n", "").strip().replace("$@", "")
bash_script = bash_script.replace("\\\n", "").strip().replace('"$@"', "")
for k, v in env_vars_to_replace.items():
bash_script = bash_script.replace(k, str(v))
output_dir = tempfile.mkdtemp(prefix="output")
output_dir = tempfile.mkdtemp(prefix="output_mbart")
if CUDA_AVAILABLE:
gpus = 1 # torch.cuda.device_count()
else:
gpus = 0
bash_script = bash_script.replace("--fp16", "")
bash_script = bash_script.replace("--fp16 ", "")
testargs = (
["finetune.py"]
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
f"--gpus={gpus}",
"--gpus=1",
"--learning_rate=3e-1",
"--warmup_steps=0",
"--val_check_interval=1.0",
@ -82,7 +81,86 @@ def test_train_mbart_cc25_enro_script():
metrics = load_json(model.metrics_save_path)
first_step_stats = metrics["val"][0]
last_step_stats = metrics["val"][-1]
assert len(metrics["val"]) == (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert len(metrics["val"]) == (args.max_epochs / args.val_check_interval) + 1 # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
# check lightning ckpt can be loaded and has a reasonable statedict
contents = os.listdir(output_dir)
ckpt_path = [x for x in contents if x.endswith(".ckpt")][0]
full_path = os.path.join(args.output_dir, ckpt_path)
ckpt = torch.load(full_path, map_location="cpu")
expected_key = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight"
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.float32
# TODO(SS): turn on args.do_predict when PL bug fixed.
if args.do_predict:
contents = {os.path.basename(p) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics["test"]) == 1
@timeout_decorator.timeout(600)
@slow
@pytest.mark.skipif(not CUDA_AVAILABLE, reason="too slow to run on CPU")
def test_opus_mt_distill_script():
data_dir = "examples/seq2seq/test_data/wmt_en_ro"
env_vars_to_replace = {
"--fp16_opt_level=O1": "",
"$MAX_LEN": 128,
"$BS": 16,
"$GAS": 1,
"$ENRO_DIR": data_dir,
"$m": "sshleifer/student_marian_en_ro_6_1",
"val_check_interval=0.25": "val_check_interval=1.0",
}
# Clean up bash script
bash_script = (
Path("examples/seq2seq/distil_marian_no_teacher.sh").open().read().split("distillation.py")[1].strip()
)
bash_script = bash_script.replace("\\\n", "").strip().replace('"$@"', "")
bash_script = bash_script.replace("--fp16 ", " ")
for k, v in env_vars_to_replace.items():
bash_script = bash_script.replace(k, str(v))
output_dir = tempfile.mkdtemp(prefix="marian_output")
bash_script = bash_script.replace("--fp16", "")
epochs = 6
testargs = (
["distillation.py"]
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
"--gpus=1",
"--learning_rate=1e-3",
f"--num_train_epochs={epochs}",
"--warmup_steps=10",
"--val_check_interval=1.0",
]
)
with patch.object(sys, "argv", testargs):
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = BartSummarizationDistiller.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
args.do_predict = False
# assert args.gpus == gpus THIS BREAKS for multigpu
model = distill_main(args)
# Check metrics
metrics = load_json(model.metrics_save_path)
first_step_stats = metrics["val"][0]
last_step_stats = metrics["val"][-1]
assert len(metrics["val"]) == (args.max_epochs / args.val_check_interval) + 1 # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01

View File

@ -114,7 +114,9 @@ class ExamplesTests(TestCasePlus):
--max_seq_length=128
""".split()
if torch.cuda.is_available():
testargs += ["--fp16", "--gpus=1"]
testargs += ["--gpus=1"]
if is_cuda_and_apex_avaliable():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
result = run_pl_glue.main()