transformers/examples/multiple-choice/README.md
Lysandre Debut 6a17688021
per_device instead of per_gpu/error thrown when argument unknown (#4618)
* per_device instead of per_gpu/error thrown when argument unknown

* [docs] Restore examples.md symlink

* Correct absolute links so that symlink to the doc works correctly

* Update src/transformers/hf_argparser.py

Co-authored-by: Julien Chaumond <chaumond@gmail.com>

* Warning + reorder

* Docs

* Style

* not for squad

Co-authored-by: Julien Chaumond <chaumond@gmail.com>
2020-05-27 11:36:55 -04:00

57 lines
1.5 KiB
Markdown

## Multiple Choice
Based on the script [`run_multiple_choice.py`]().
#### Fine-tuning on SWAG
Download [swag](https://github.com/rowanz/swagaf/tree/master/data) data
```bash
#training on 4 tesla V100(16GB) GPUS
export SWAG_DIR=/path/to/swag_data_dir
python ./examples/multiple-choice/run_multiple_choice.py \
--task_name swag \
--model_name_or_path roberta-base \
--do_train \
--do_eval \
--data_dir $SWAG_DIR \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--max_seq_length 80 \
--output_dir models_bert/swag_base \
--per_gpu_eval_batch_size=16 \
--per_device_train_batch_size=16 \
--gradient_accumulation_steps 2 \
--overwrite_output
```
Training with the defined hyper-parameters yields the following results:
```
***** Eval results *****
eval_acc = 0.8338998300509847
eval_loss = 0.44457291918821606
```
## Tensorflow
```bash
export SWAG_DIR=/path/to/swag_data_dir
python ./examples/multiple-choice/run_tf_multiple_choice.py \
--task_name swag \
--model_name_or_path bert-base-cased \
--do_train \
--do_eval \
--data_dir $SWAG_DIR \
--learning_rate 5e-5 \
--num_train_epochs 3 \
--max_seq_length 80 \
--output_dir models_bert/swag_base \
--per_gpu_eval_batch_size=16 \
--per_device_train_batch_size=16 \
--logging-dir logs \
--gradient_accumulation_steps 2 \
--overwrite_output
```
# Run it in colab
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ViktorAlm/notebooks/blob/master/MPC_GPU_Demo_for_TF_and_PT.ipynb)