transformers/examples/README.md
2020-08-10 03:08:46 -04:00

128 lines
6.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Examples
Version 2.9 of 🤗 Transformers introduces a new [`Trainer`](https://github.com/huggingface/transformers/blob/master/src/transformers/trainer.py) class for PyTorch, and its equivalent [`TFTrainer`](https://github.com/huggingface/transformers/blob/master/src/transformers/trainer_tf.py) for TF 2.
Running the examples requires PyTorch 1.3.1+ or TensorFlow 2.2+.
Here is the list of all our examples:
- **grouped by task** (all official examples work for multiple models)
- with information on whether they are **built on top of `Trainer`/`TFTrainer`** (if not, they still work, they might just lack some features),
- whether they also include examples for **`pytorch-lightning`**, which is a great fully-featured, general-purpose training library for PyTorch,
- links to **Colab notebooks** to walk through the scripts and run them easily,
- links to **Cloud deployments** to be able to deploy large-scale trainings in the Cloud with little to no setup.
This is still a work-in-progress in particular documentation is still sparse so please **contribute improvements/pull requests.**
## The Big Table of Tasks
| Task | Example datasets | Trainer support | TFTrainer support | pytorch-lightning | Colab
|---|---|:---:|:---:|:---:|:---:|
| [**`language-modeling`**](https://github.com/huggingface/transformers/tree/master/examples/language-modeling) | Raw text | ✅ | - | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/01_how_to_train.ipynb)
| [**`text-classification`**](https://github.com/huggingface/transformers/tree/master/examples/text-classification) | GLUE, XNLI | ✅ | ✅ | ✅ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/trainer/01_text_classification.ipynb)
| [**`token-classification`**](https://github.com/huggingface/transformers/tree/master/examples/token-classification) | CoNLL NER | ✅ | ✅ | ✅ | -
| [**`multiple-choice`**](https://github.com/huggingface/transformers/tree/master/examples/multiple-choice) | SWAG, RACE, ARC | ✅ | ✅ | - | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ViktorAlm/notebooks/blob/master/MPC_GPU_Demo_for_TF_and_PT.ipynb)
| [**`question-answering`**](https://github.com/huggingface/transformers/tree/master/examples/question-answering) | SQuAD | ✅ | ✅ | - | -
| [**`text-generation`**](https://github.com/huggingface/transformers/tree/master/examples/text-generation) | - | n/a | n/a | n/a | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/blog/blob/master/notebooks/02_how_to_generate.ipynb)
| [**`distillation`**](https://github.com/huggingface/transformers/tree/master/examples/distillation) | All | - | - | - | -
| [**`summarization`**](https://github.com/huggingface/transformers/tree/master/examples/seq2seq) | CNN/Daily Mail | - | - | ✅ | -
| [**`translation`**](https://github.com/huggingface/transformers/tree/master/examples/seq2seq) | WMT | - | - | ✅ | -
| [**`bertology`**](https://github.com/huggingface/transformers/tree/master/examples/bertology) | - | - | - | - | -
| [**`adversarial`**](https://github.com/huggingface/transformers/tree/master/examples/adversarial) | HANS | ✅ | - | - | -
<br>
## Important note
**Important**
To make sure you can successfully run the latest versions of the example scripts, you have to install the library from source and install some example-specific requirements.
Execute the following steps in a new virtual environment:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
pip install .
pip install -r ./examples/requirements.txt
```
## One-click Deploy to Cloud (wip)
#### Azure
[![Deploy to Azure](https://aka.ms/deploytoazurebutton)](https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2FAzure%2Fazure-quickstart-templates%2Fmaster%2F101-storage-account-create%2Fazuredeploy.json)
## Running on TPUs
When using Tensorflow, TPUs are supported out of the box as a `tf.distribute.Strategy`.
When using PyTorch, we support TPUs thanks to `pytorch/xla`. For more context and information on how to setup your TPU environment refer to Google's documentation and to the
very detailed [pytorch/xla README](https://github.com/pytorch/xla/blob/master/README.md).
In this repo, we provide a very simple launcher script named [xla_spawn.py](https://github.com/huggingface/transformers/tree/master/examples/xla_spawn.py) that lets you run our example scripts on multiple TPU cores without any boilerplate.
Just pass a `--num_cores` flag to this script, then your regular training script with its arguments (this is similar to the `torch.distributed.launch` helper for torch.distributed).
For example for `run_glue`:
```bash
python examples/xla_spawn.py --num_cores 8 \
examples/text-classification/run_glue.py
--model_name_or_path bert-base-cased \
--task_name mnli \
--data_dir ./data/glue_data/MNLI \
--output_dir ./models/tpu \
--overwrite_output_dir \
--do_train \
--do_eval \
--num_train_epochs 1 \
--save_steps 20000
```
Feedback and more use cases and benchmarks involving TPUs are welcome, please share with the community.
## Logging & Experiment tracking
You can easily log and monitor your runs code. The following are currently supported:
* [TensorBoard](https://www.tensorflow.org/tensorboard)
* [Weights & Biases](https://docs.wandb.com/library/integrations/huggingface)
* [Comet ML](https://www.comet.ml/docs/python-sdk/huggingface/)
### Weights & Biases
To use Weights & Biases, install the wandb package with:
```bash
pip install wandb
```
Then log in the command line:
```bash
wandb login
```
If you are in Jupyter or Colab, you should login with:
```python
import wandb
wandb.login()
```
Whenever you use `Trainer` or `TFTrainer` classes, your losses, evaluation metrics, model topology and gradients (for `Trainer` only) will automatically be logged.
When using 🤗 Transformers with PyTorch Lightning, runs can be tracked through `WandbLogger`. Refer to related [documentation & examples](https://docs.wandb.com/library/integrations/lightning).
### Comet.ml
To use `comet_ml`, install the Python package with:
```bash
pip install comet_ml
```
or if in a Conda environment:
```bash
conda install -c comet_ml -c anaconda -c conda-forge comet_ml
```