![]() * Faster list concat for trainer_pt_utils.get_length_grouped_indices() (#11825)
get_length_grouped_indices() in LengthGroupedSampler and DistributedLengthGroupedSampler
is prohibitively slow for large number of megabatches (in test case takes hours for ~270k
megabatches with 100 items each) due to slow list concatenation with sum(megabatches, []).
Resolves: #11795
Co-authored-by: ctheodoris <cvtheodo@ds.dfci.harvard.edu>
* Replace double occurrences as the last step (#11367)
* [Flax] Fix PyTorch import error (#11839)
* fix_torch_device_generate_test
* remove @
* change pytorch import to flax import
* Fix reference to XLNet (#11846)
* Switch mem metrics flag (#11851)
* Switch mem metrics flag
* Update src/transformers/training_args.py
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Fix flos single node (#11844)
* fixing flos bug/typo in non-distributed setting
* storing flos every logging_interval
* Fix two typos in docs (#11852)
* typo2
* fix typo
* [Trainer] Report both steps and num samples per second (#11818)
* [Trainer] Report both steps and num samples per second
* Fix batch number
* Update src/transformers/trainer_utils.py
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Address review comments
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Add some tests to the slow suite #11860
* Enable memory metrics in tests that need it (#11859)
* fixed a small typo in the doc (#11856)
* typo (#11858)
* Add option to log only once in multinode training (#11819)
* Add option to long only once in multinode training
* Use an alternate property
* [Wav2Vec2] SpecAugment Fast (#11764)
* first try
* finish
* [lm examples] fix overflow in perplexity calc (#11855)
* fix overflow in perplexity calc
* use inf
* fix
* [Examples] create model with custom config on the fly (#11798)
* create custom model on the flight
* better wording
* add update_from_string
* cleanup
* cleanup
* Update src/transformers/configuration_utils.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* more bool options
* style
* fix logger
* add test
* add the doc
* assert on conflict of options
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* [Wav2Vec2ForCTC] example typo fixed (#11878)
* Ensure input tensor are on device. (#11874)
The feature extractor does not create tensors on the appropriate device,
so we call `ensure_tensor_on_device` before feeding the processed inputs
to the model.
* Fix usage of head masks by TF encoder-decoder models' `generate()` function (#11775)
* Fix Bart
* Fix Blenderbot{,_small}
* Fix LED
* Fix Marian
* Fix MBart
* Fix Pegasus
* Fix T5
* Add test for generation with head_mask
* Add a common TF test
* Override a test for the LED model as head masking is not yet properly implemented
* Remove all head_masks from input preparation for LED
* Drop masking for T5 as it needs a bit of refactor
* Correcting comments in T5Stack to reflect correct tuple order (#11330)
* Correcting comments to reflect correct tuple order
In order to match the actual order (line 513 and 516, and as accessed in 968), I've changed the order mentioned in comments L962 and L966-967.
* Update modeling_t5.py
Updating another comment as well
* Removing extra space
* Fixing style and quality
* style & quality
* Update src/transformers/models/t5/modeling_t5.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* [Flax] Allow dataclasses to be jitted (#11886)
* fix_torch_device_generate_test
* remove @
* change dataclasses to flax ones
* fix typo
* fix jitted tests
* fix bert & electra
* changing find_batch_size to work with tokenizer outputs (#11890)
* changing find_batch_size to work with tokenizer outputs
trainer_pt_utils.find_batch_size does not recognize the batch size of BatchEncoding objects. This can cause an error when a trainer relies on find_batch_size to report the number of observed examples in the evaluation loop.
* Trigger CI
Co-authored-by: jrenner <joseph.renner@inria.fr>
* Link official Cloud TPU JAX docs (#11892)
* Flax Generate (#11777)
* fix_torch_device_generate_test
* remove @
* add
* indexing
* correct a couple of tests
* fix tests
* add logits processor
* finish top_k, top_p, temp
* add docs
* correct flax prng key default
* improve generate
* add generation docs
* add docs
* make style
* revert model outputs change
* make style
* correct typo
* fix tests
* fix slow test
* add raise
* finish generation
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
* Add Emotion Speech Noteboook (#11900)
* Update deepspeed config to reflect hyperparameter search parameters (#11896)
* rebuild deepspeed config for hyperparameter search
* reformat code to fix style issues
* Adding new argument `max_new_tokens` for generate. (#11476)
* Adding new argument `max_new_tokens` for generate.
This is a proposal to add a new argument `max_new_tokens` to `generate`.
This include a `MaxNewTokensCriteria` that enables callers that don't
know about the token length ahead (like pipelines callers) to manage
more easily the length of their generated output.
* Adding a test for the user warning when both`max_length` and
`max_new_tokens` are used together.
* Removed redundant `no_grad`.
* Added Sequence Classification class in GPTNeo (#11906)
* seq classification changes
* fix tests
* [Flax] Return Attention from BERT, ELECTRA, RoBERTa and GPT2 (#11918)
* Added logic to return attention from flax-bert model and added test cases to check that
* Added new line at the end of file to test_modeling_flax_common.py
* fixing code style
* Fixing Roberta and Elextra models too from cpoying bert
* Added temporary hack to not run test_attention_outputs for FlaxGPT2
* Returning attention weights from GPT2 and changed the tests accordingly.
* last fixes
* bump flax dependency
Co-authored-by: jayendra <jayendra@infocusp.in>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Test optuna and ray (#11924)
* Remove `datasets` submodule
* fix assert (#11935)
* Remove redundant `nn.log_softmax` in `run_flax_glue.py` (#11920)
* Remove redundant `nn.log_softmax` in `run_flax_glue.py`
`optax.softmax_cross_entropy` expects unnormalized logits, and so it already calls `nn.log_softmax`, so I believe it is not needed here. `nn.log_softmax` is idempotent so mathematically it shouldn't have made a difference.
* Remove unused 'flax.linen' import
* Add MT5ForConditionalGeneration as supported arch. to summarization README (#11961)
* Add MT5ForConditionalGeneration as supported arch.
* Update README.md
* Add FlaxCLIP (#11883)
* add flax CLIP
* default input_shape
* add tests
* fix test
* fix name
* fix docs
* fix shapes
* attend at least 1 token
* flax conv to torch conv
* return floats
* fix equivalence tests
* fix import
* return attention_weights and update tests
* fix dosctrings
* address patricks comments
* input_shape arg
* add tests for get_image_features and get_text_features methods
* fix tests
* RAG-2nd2end-revamp (#11893)
* initial
* code quality test
* code quality
* added test functions in test_modeling_rag.py and test_retrieval_rag.py to test end2end retreiver
* minor change in test_modeling_rag
* fixed tests
* Update examples/research_projects/rag-end2end-retriever/README.md
typo corrected as suggested by lhoestq
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
* Update examples/research_projects/rag-end2end-retriever/finetune_rag.py
type change suggested by lhoestq
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
* Update src/transformers/models/rag/retrieval_rag.py
Adding this change as mentioned by lhoestq.
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
* completed the minor changes suggested by the reviewers
Co-authored-by: Quentin Lhoest <42851186+lhoestq@users.noreply.github.com>
* modify qa-trainer (#11872)
* modify qa-trainer
* fix flax model
* bugfixes training_args.py (#11922)
modified according to:
https://pytorch.org/xla/release/1.8.1/_modules/torch_xla/core/xla_model.html
* reinitialize wandb config for each hyperparameter search run (#11945)
* Add regression tests for slow sentencepiece tokenizers. (#11737)
* add test_vocab_size for sentencepiece tok.
* add test_get_vocab for sentencepiece tok.
* add test_convert_token_and_id for sentencepiece tok.
* add test_tokenize_and_convert_tokens_to_string for all tok.
* improve test_tokenize_and_convert_tokens_to_string for sp. tok.
* add common tokenizer integration tests
- for albert
- for barthez
* add tokenizer integration tests to bert gen.
* add most tokenizer integration tests
* fix camembert tokenizer integration test
* add tokenizer integration test to marian
* add tokenizer integration test to reformer
* add typing and doc to tokenizer_integration_test_util
* fix tokenizer integration test of reformer
* improve test_sentencepiece_tokenize_and_convert_tokens_to_string
* empty commit to trigger CI
* fix tokenizer integration test of reformer
* remove code not needed anymore
* empty commit to trigger CI
* empty commit to trigger CI
* Authorize args when instantiating an AutoModel (#11956)
* Neptune.ai integration (#11937)
An option that turns on neptune.ai logging
--report_to 'neptune'
Additional ENV variables:
NEPTUNE_PROJECT
NEPTUNE_API_TOKEN
NEPTUNE_RUN_NAME (optional)
NEPTUNE_STOP_TIMEOUT (optional)
* Run the integration tests on schedule tests instead of master tests
* [deepspeed] docs (#11940)
* deepspeed docs
* cleanup
* cleanup
* typo correction (#11973)
* typo correction
* type corrections
* ByT5 model (#11971)
* allow tf to use uneven num of layers
* add tokenizer
* finish docs
* finish docs
* Apply suggestions from code review
* include in index
* finish
* Update docs/source/model_doc/byt5.rst
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* apply sylvais suggestions
* make style
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
* Typo in usage example, changed to device instead of torch_device (#11979)
* [DeepSpeed] decouple `DeepSpeedConfigHF` from `Trainer` (#11966)
* decouple DeepSpeedConfigHF from Trainer
* add LoggingLevel ctx manager; add new test
* cleanup
* add docs
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* implemented suggested renames
* formatter workaround
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* [Trainer] add train loss and flops metrics reports (#11980)
* add train loss and flops metrics reports
* consistency
* add train_loss to skip keys
* restore on_train_end call timing
* Bump urllib3 from 1.25.8 to 1.26.5 in /examples/research_projects/lxmert (#11983)
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.25.8 to 1.26.5.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.25.8...1.26.5)
---
updated-dependencies:
- dependency-name: urllib3
dependency-type: direct:production
...
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
* [RAG] Fix rag from pretrained question encoder generator behavior (#11962)
* fix_torch_device_generate_test
* remove @
* fix rag from pretrained loading
* add test
* uplaod
* finish
* VisualBERT (#10534)
* Init VisualBERT
* Add cookie-cutter, Config, and Embeddings
* Add preliminary Model
* Add Bert analogous classes
* Add basic code for NLVR, VQA, Flickr
* Update Init
* Fix VisualBert Downstream Models
* Rename classifier to cls
* Comment position_ids buffer
* Remove sentence image predictor output
* Update output dicts
* Remove unnecessary files
* Fix Auto Modeling
* Fix transformers init
* Add conversion script
* Add conversion script
* Fix docs
* Update visualbert modelling
* Update configuration
* Style fixes
* Add model and integration tests
* Add all tests
* Update model mapping
* Add simple detector from original repository
* Update docs and configs
* Fix style
* Fix style
* Update docs
* Fix style
* Fix import issues in style
* Fix style
* Add changes from review
* Fix style
* Fix style
* Update docs
* Fix style
* Fix style
* Update docs/source/model_doc/visual_bert.rst
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/visual_bert/modeling_visual_bert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update tests/test_modeling_visual_bert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/visual_bert/modeling_visual_bert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/visual_bert/modeling_visual_bert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/visual_bert/modeling_visual_bert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add changes from review
* Remove convert run script
* Add changes from review
* Update src/transformers/models/visual_bert/modeling_visual_bert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/visual_bert/modeling_visual_bert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/visual_bert/modeling_visual_bert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/visual_bert/modeling_visual_bert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update src/transformers/models/visual_bert/modeling_visual_bert.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add changes from review
* Add changes from review
* Add visual embedding example in docs
* Fix "copied from" comments
* Add changes from review
* Fix error, style, checkpoints
* Update docs
* Fix integration tests
* Fix style
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix examples (#11990)
* [docs] fix xref to `PreTrainedModel.generate` (#11049)
* fix xref to generate
* do the same for search methods
* style
* style
* Update return introduction (#11976)
Make it clear that the `forward` method now returns a dict instead of tuple.
Fix style
* [deepspeed] Move code and doc into standalone files (#11984)
* move code and docs
* style
* moved
* restore
* [deepspeed] add nvme test skip rule (#11997)
* add nvme skip rule
* fix
* Fix weight decay masking in `run_flax_glue.py` (#11964)
* Fix weight decay masking in `run_flax_glue.py`
Issues with the previous implementation:
- The `dict` from `traverse_util.flatten_dict` has keys which are tuples of strings, not one long string with the path separated by periods.
- `optax.masked` applies the transformation wherever the mask is True, so the masks are flipped.
- Flax's LayerNorm calls the scale parameter `scale` not `weight`
* Fix formatting with black
* adapt results
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
* [Flax] Refactor MLM (#12013)
* fix_torch_device_generate_test
* remove @
* finish refactor
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
* [Deepspeed] Assert on mismatches between ds and hf args (#12021)
* wip
* add mismatch validation + test
* renames
* Update docs/source/main_classes/deepspeed.rst
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* renames
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* [TrainerArguments] format and sort __repr__, add __str__ (#12018)
* format and sort __repr__, add __str__
* typo
* use __str__ directly
* alias __repr__ = __str__
* Fixed Typo in modeling_bart.py (#12035)
* Fixed Typo in modeling_bart.py - Issue #11895
* Fixed Typo in modeling_bart.py
* fix deberta 2 tokenizer integration test (#12017)
* fix docs of past_key_values (#12049)
* [JAX] Bump jax lib (#12053)
* fix_torch_device_generate_test
* remove @
* bump up jax lib
* Fixes bug that appears when using QA bert and distilation. (#12026)
* Fixing bug that appears when using distilation (and potentially other uses).
During backward pass Pytorch complains with:
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
This happens because the QA model code modifies the start_positions and end_positions input tensors, using clamp_ function: as a consequence the teacher and the student both modifies the inputs, and backward pass fails.
* Fixing all models QA clamp_ bug.
* Extend pipelines for automodel tupels (#12025)
* fix_torch_device_generate_test
* remove @
* finish
* refactor
* add test
* fix test
* Attempt at simplification.
* Small fix.
* Fixing non existing AutoModel for TF.
* Naming.
* Remove extra condition.
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
* Add optional grouped parsers description to HfArgumentParser (#12042)
* Adding optional argument group to HfArgumentParser
* Minor
* remove whitespace
* Minor styling
* adds metric prefix. (#12057)
* adds metric prefix.
* update tests to include prefix
* skip failing test (#12059)
* Fix integration tests (#12066)
* Fix tapas issue (#12063)
* Fix scatter function to be compatible with torch-scatter 2.7.0
* Allow test again
* updated the original RAG implementation to be compatible with latest Pytorch-Lightning (#11806)
* updated the original RAG implementation to be compatible with the latest PL version
* updated the requirements.txt file
* execute make style
* code quality test
* code quality
* conflix resolved in requirement.txt
* code quality
* changed the MyDDP class name to CustomDDP
* Replace legacy tensor.Tensor with torch.tensor/torch.empty (#12027)
* Replace legacy torch.Tensor constructor with torch.{tensor, empty}
* Remove torch.Tensor in examples
* Add torch to requirements.txt in language-modeling (#12040)
* Add torch to requirements.txt in language-modeling
* Update examples/pytorch/language-modeling/requirements.txt
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Properly indent block_size (#12070)
* [Deepspeed] various fixes (#12058)
* replace deprecated config
* sub_group_size was too big
* complete deprecation removal
* [Deepspeed Wav2vec2] integration (#11638)
* wip
* wip - but working with https://github.com/microsoft/DeepSpeed/pull/1044
* cleanup
* workaround
* working 5/8 modes
* solve fp32 distributed zero3
* style
* sync
* sync
* rework
* deprecation
* cleanup
* https://github.com/microsoft/DeepSpeed/pull/1044 pr was merged
* clean up
* add a guide
* more prose
* more prose
* fix
* more prose
* sub_group_size was too big
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* refactor
* bug fix
* make the true check explicit
* new deepspeed release
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* typo
* Update run_ner.py with id2label config (#12001)
* sync LayerDrop for Wav2Vec2Encoder + tests (#12076)
* Add DETR (#11653)
* Squash all commits of modeling_detr_v7 branch into one
* Improve docs
* Fix tests
* Style
* Improve docs some more and fix most tests
* Fix slow tests of ViT, DeiT and DETR
* Improve replacement of batch norm
* Restructure timm backbone forward
* Make DetrForSegmentation support any timm backbone
* Fix name of output
* Address most comments by @LysandreJik
* Give better names for variables
* Conditional imports + timm in setup.py
* Address additional comments by @sgugger
* Make style, add require_timm and require_vision to testsé
* Remove train_backbone attribute of DetrConfig, add methods to freeze/unfreeze backbone
* Add png files to fixtures
* Fix type hint
* Add timm to workflows
* Add `BatchNorm2d` to the weight initialization
* Fix retain_grad test
* Replace model checkpoints by Facebook namespace
* Fix name of checkpoint in test
* Add user-friendly message when scipy is not available
* Address most comments by @patrickvonplaten
* Remove return_intermediate_layers attribute of DetrConfig and simplify Joiner
* Better initialization
* Scipy is necessary to get sklearn metrics
* Rename TimmBackbone to DetrTimmConvEncoder and rename DetrJoiner to DetrConvModel
* Make style
* Improve docs and add 2 community notebooks
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
* [test] support more than 2 gpus (#12074)
* support more than 2 gpus
* style
* Wav2Vec2 Pretraining (#11306)
* Working quantizer forward
* Working quantizer forward
* Clean up unused model parts, test reproducibility
* Working quantizer forward
* Clean up unused model parts, test reproducibility
* Remove custom outputs from the shared ones
* correct conversion
* correct bug
* add first pretrain script
* save intermediate
* static shapes
* save intermediate
* finish first pretrain script version
* more refactor
* remove wanddb
* refactor more
* improve test
* correct perplexity compute bug
* finish model implementation
* add to docs
* finish docs
* finish pretraining script
* finish pretraining script
* remove wandb
* finish PR for merge
* finish config
* finish
* make deepspeed work
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* apply suggestions
* fix flaky test
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* pass decay_mask fn to optimizer (#12087)
* rm require_version_examples (#12088)
* [Wav2Vec2ForPretraining] Correct checkpoints wav2vec2 & fix tests (#12089)
* fix_torch_device_generate_test
* remove @
* fix tests
* Add text_column_name and label_column_name to run_ner and run_ner_no_trainer args (#12083)
* Add text_column_name and label_column_name to run_ner args
* Minor fix: grouping for text and label column name
* CLIPFeatureExtractor should resize images with kept aspect ratio (#11994)
* Resize with kept aspect ratio
* Fixed failed test
* Overload center_crop and resize methods instead
* resize should handle non-PIL images
* update slow test
* Tensor => tensor
Co-authored-by: patil-suraj <surajp815@gmail.com>
* New TF GLUE example (#12028)
* Pushing partially-complete new GLUE example
* First draft of the new TF GLUE example! Needs a little more testing to be sure but it's almost ready.
* Fix to the fit() call
* Bugfixes, making sure TPU and multi-GPU support is ready
* Remove logger line that depends on Pytorch
* Style pass
* Deleting old TF GLUE example
* Include label2id and id2label in the saved model config
* Don't clobber the existing model.config.label2id
* Style fixes
* Update examples/tensorflow/text-classification/run_glue.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix quality
* Update README.md to cover the TF GLUE example.
* Minor style edits
* Appending label2id and id2label to models to ensure inference works properly (#12102)
* Fix a condition in test_generate_with_head_masking (#11911)
* Fix a condition in test_generate_with_head_masking
* Fix usage of head_mask in bigbirg_pegasus
* Fix head masking for speech2text
* Resolve copy mismatch + drop unwanted print statement
* Fix the condition
* Flax VisionTransformer (#11951)
* adding vit for flax
* added test for Flax-vit and some bug-fixes
* overrided methods where variable changes were necessary for flax_vit test
* added FlaxViTForImageClassification for test
* Update src/transformers/models/vit/modeling_flax_vit.py
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* made changes suggested in PR
* Adding jax-vit models for autoimport
* swapping num_channels and height,width dimension
* fixing the docstring for torch-like inputs for VIT
* add model to main init
* add docs
* doc, fix-copies
* docstrings
* small test fixes
* fix docs
* fix docstr
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* style
Co-authored-by: jayendra <jayendra@infocusp.in>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add relevant description to tqdm in examples (#11927)
* add relevant `desc` in examples
* require_version datasets>=1.8.0
* Fix head masking generate tests (#12110)
* fix_torch_device_generate_test
* remove @
* fix tests
* Flax CLM script (#12023)
* first draft
* max_seq_length => block_size
* fix arg names
* fix typos
* fix loss calculation
* add max examples, fix train eval steps, metrics
* optimizer mask
* fix perpelexity, metric logging
* fix logging
* data_collator = > data_loader
* refactor loss_fn
* support single GPU
* pass distributed to write_metric
* fix jitting
* fix single device training
* fix single device metrics
* close inner progress bars once finished
* add overwrite_cache arg
* ifx dataset caching issue
* add more logs
* few small fixes,
* address nicholas suggestions
* fix docstr
* address patricks suggestions
* make flake happy
* pass new new_dropout_rng to apply_gradients
* reset train metrics after every epoc
* remove distributed logis, small fixes
* Add from_pretrained to dummy timm objects (#12097)
* Add from_pretrained to dummy timm
* Fix at the source
* Update utils/check_dummies.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Missing pretrained dummies
* Style
Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix t5 error message (#12136)
* Fix t5 error message
* Fix again
* Fix megatron_gpt2 attention block's causal mask (#12007)
* Fix megatron_gpt2 attention block's causal mask.
* compatibility with checkpoints created with recent versions of Megatron-LM
* added integration test for the released Megatron-GPT2 model
* code style changes
* added option to megatron conversion script to read from config file
Co-authored-by: Guido Novati <gnovati@nvidia.com>
* Add mlm pretraining xla torch readme (#12011)
* fix_torch_device_generate_test
* remove @
* upload
* Apply suggestions from code review
* Apply suggestions from code review
* Apply suggestions from code review
* Update examples/flax/language-modeling/README.md
* add more info
* finish
* fix
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
* add readme for flax clm (#12111)
* add readme for flax clm
* use section link for tokenizer
* Apply suggestions from code review
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* update metrics
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* FlaxBart (#11537)
* Start working on FlaxBart
* Create modeling_flax_bart.py
* Write FlaxBartAttention
* Add FlaxBartEncoderLayer
* Add FlaxBartDecoderLayer and some typing
* Add helepr function for FlaxBart
* shift_tokens_right
* _make_causal_mask
* _expand_mask
* Add PositionalEmbedding and fix init_std naming
* Add FlaxBartPretrainedModel
* Add FlaxBartEncoder
* Add FlaxBartEncoder
* Add FlaxBartEncoder among modules to be imported
* YET WE CANNOT INITIALIZE THAT!! :(
* Make BartEncoder working
Change BartEncoder to instance of nn.Module so far
* Add FlaxBartDecoder
* Add FlaxBartModel
* TODO to make model run -> Prepapre model inputs
* Resolve padding
* Add FlaxBartModel
* Add FlaxBartModel into importable modules
* Remove FlaxBartEncoder and FlaxBartDecoder from importable modules
* make style; not properly working
* make style; make quality not pass due to some import I left
* Remove TODO for padding_idx in nn.Embed so far
* Add FlaxBartForConditionalGeneration
* Incorporate Flax model output classes, i.e. return_dict
* Add another models and incorporate use_cache arg
* Add FlaxBartForSequenceClassification and FlaxBartForQuestionAnswering
* Incorporate use_cache arg from PyTorch implementation
* Add all necessary Flax output utils
* Add FlaxBartForCausalLM; not working yet'
* Add minor improvements; still lacks some functionality
* Update docs, src and tests
* Add support of FlaxBart to docs/source
* Fix some bugs in FlaxBart souce code
* Add some neccessary tests for FlaxBart models - jit_compilation not passing
* Fix tests and add test_head_masking
* Fix tests for @jax.jit computation
* Add test_head_masking
* Migrate FlaxBart tests from jax.numpy to numpy
* Remove FlaxBartForCausalLM
* Clean repo
* fix bart model weight structure
* Fix FlaxBartForSequenceClassification
Slicing is not possible to use below jit, therefore, selecting sentence
representation from hidden_states must be changed.
* Allow FlaxBartForSequenceClassification for testing pt_flax equivalence
* Allow testing for FlaxBartForQA for pt_flax equivalence
* Add a comment to FlaxBartForSequenceClassification + change noise from 1e-3 to 1e-6
* remove past_key_values
* remove inputs_mebeds and make input_ids required
* add position ids
* re-write attention layer
* fix dataclass
* fix pos embeds and attention output
* fix pos embeds
* expose encode method
* expose decode method
* move docstring to top
* add cache for causal attn layer
* remove head masking for now
* s2s greedy search first pass
* boom boom
* fix typos
* fix greedy generate for bart
* use encoder, decoder layers instead of num_hidden_layers
* handle encoder_outputs
* cleanup
* simplify decoding
* more clean-up
* typos
* Change header + add {decoder_,}position_ids into 2 models
* add BartConfig
* fix existing tests
* add encode, decode methods
* Fix shift_tokens_right for JIT compilation + clarify one condition
* fix decode
* encoder => encode
* simplify generate
* add tests for encode and decode
* style
* add tests for cache
* fix equivalence tests
* sample generate now works with seq2seq
* generation tests
* initialize dense layers
* docstring and cleanup
* quality
* remove get/set input_embeddings
* address Patricks suggestions
* decode for every model, remove encoder_outputs from call
* update tests accordingly
* decode returns only decoder outputs and logits
* fix arguments
* doc encode, decode methods
* correct base_model_prefix
* fix test for seq classif model
* fix docs
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* Feature to use the PreTrainedTokenizerFast class as a stand-alone tokenizer (#11810)
* feature for tokenizer without slow/legacy version
* format
* modify common test
* add tests
* add PreTrainedTokenizerFast to AutoTokenizer
* format
* change tokenizer common test in order to be able to run test without a slow version
* update tokenizer fast test in order to use `rust_tokenizer_class` attribute instead of `tokenizer_class`
* add autokenizer test
* replace `if self.tokenizer_class is not None` with ` if self.tokenizer_class is None`
* remove obsolete change in comment
* Update src/transformers/tokenization_utils_base.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Update src/transformers/tokenization_utils_fast.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* change `get_main_tokenizer` into `get_tokenizers`
* clarify `get_tokenizers` method
* homogenize with `test_slow_tokenizer` and `test_rust_tokenizer`
* add `test_rust_tokenizer = False` to tokenizer which don't define a fast version
* `test_rust_tokenizer = False` for BertJapaneseTokenizer
* `test_rust_tokenizer = False` for BertJapaneseCharacterTokenizationTest
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* [Flax] Add links to google colabs (#12146)
* fix_torch_device_generate_test
* remove @
* add colab links
* Don't log anything before logging is setup in examples (#12121)
* Don't log anything before logging is setup in examples
* Last example
* Use text_column_name variable instead of "text" (#12132)
* Use text_column_name variable instead of "text"
`text_column_name` was already defined above where I made the changes and it was also used below where I made changes.
This is a very minor change. If a dataset does not use "text" as the column name, then the `tokenize_function` will now use whatever column is assigned to `text_column_name`. `text_column_name` is just the first column name if "text" is not a column name. It makes the function a little more robust, though I would assume that 90% + of datasets use "text" anyway.
* black formatting
* make style
Co-authored-by: Nicholas Broad <nicholas@nmbroad.com>
* [lm examples] Replicate --config_overrides addition to other LM examples (#12135)
* [lm examples] Replicate --config_overrides addition to other LM examples
* Removing no trainer files changes
* Update README
Co-authored-by: Kumar Abhishek <kabhishek@expedia.com>
* fix error message (#12148)
* [optim] implement AdafactorSchedule (#12123)
* implement AdafactorSchedule
* typo
* fix
* Update src/transformers/optimization.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* [style] consistent nn. and nn.functional (#12124)
* consistent nn. and nn.functional
* fix glitch
* fix glitch #2
* Adding TFWav2Vec2Model (#11617)
* [WIP] Add TFWav2Vec2Model
Work in progress for adding a tensorflow version of Wav2Vec2
* feedback changes
* small fix
* Test Feedback Round 1
* Add SpecAugment and CTC Loss
* correct spec augment mask creation
* docstring and correct copyright
* correct bugs
* remove bogus file
* finish tests correction
* del unnecessary layers
* Update src/transformers/models/wav2vec2/modeling_tf_wav2vec2.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* make style
* correct final bug
* Feedback Changes
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* [Flax] Fix flax pt equivalence tests (#12154)
* fix_torch_device_generate_test
* remove @
* upload
* consistent nn. and nn.functional: p2 templates (#12153)
* Flax Big Bird (#11967)
* add flax bert
* bert -> bigbird
* original_full ported
* add debugger
* init block sparse
* fix copies ; gelu_fast -> gelu_new
* block sparse port
* fix block sparse
* block sparse working
* all ckpts working
* fix-copies
* make quality
* init tests
* temporary fix for FlaxBigBirdForMultipleChoice
* skip test_attention_outputs
* fix
* gelu_fast -> gelu_new ; fix multiple choice model
* remove nsp
* fix sequence classifier
* fix
* make quality
* make fix-copies
* finish
* Delete debugger.ipynb
* Update src/transformers/models/big_bird/modeling_flax_big_bird.py
* make style
* finish
* bye bye jit flax tests
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* [style] consistent nn. and nn.functional: part 3 `tests` (#12155)
* consistent nn. and nn.functional: p3 templates
* restore
* [style] consistent nn. and nn.functional: part 4 `examples` (#12156)
* consistent nn. and nn.functional: p4 examples
* restore
* consistent nn. and nn.functional: part 5 docs (#12161)
* Add video links to the documentation (#12162)
* [Flax generate] Add params to generate (#12171)
* fix_torch_device_generate_test
* remove @
* add params as input
* finish
* Use a released version of optax rather than installing from Git. (#12173)
Use a released version of optax rather than installing from Git
* Have dummy processors have a `from_pretrained` method (#12145)
* Add course banner (#12157)
* Add course banner
* Update course banner
* Adjust banner width
* Enable add_prefix_space if model_type is roberta or gpt2 (#12116)
* Update AutoModel classes in summarization example (#12178)
- Convert use of deprecated AutoModelWithLMHead to AutoModelForSeq2SeqLM
- Add newly required `truncation=True` to `tokenizer.encode` with `max_length`
This silences all warnings.
* Ray Tune Integration Updates (#12134)
* fix
* fixes
* add back to scheduled tests
* formatting
* Update integrations.py
* [testing] ensure concurrent pytest workers use a unique port for torch.dist (#12166)
* ensure concurrent pytest workers use a unique port for torch.distributed.launch
* reword
* Model card defaults (#12122)
* [WIP] Model card defaults
* finetuned_from default value
* Add all mappings to the mapping file
* Be more defensive on finetuned_from arg
* Add default task tag
* Separate tags from tasks
* Edge case for dataset
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Temporarily deactivate torch-scatter while we wait for new release (#12181)
* Temporarily deactivate torch-scatter while we wait for new release
* torch-1.8.1 binary for scatter
* Revert to 1.8.0
* Pin torch dependency
* torchaudio and torchvision
* Temporarily deactivate torchhub test (#12184)
* [Flax] Add Beam Search (#12131)
* fix_torch_device_generate_test
* remove @
* push new logit processors
* add processors
* save first working version
* save intermediate
* finish
* make style
* make fix-copies
* finish
* Update tests/test_modeling_flax_bart.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* Hubert (#11889)
* fix_torch_device_generate_test
* remove @
* add hubert
* add first test file
* more docs
* fix bugs
* fix bug
* finish
* finish
* finish docstring
* fix
* fix
* finalize
* add to ignored
* finish
* Apply suggestions from code review
* correct naming
* finish
* fix auto config
* finish
* correct convert script
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* apply suggestions lysandre & suraj
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* updated DLC images and sample notebooks (#12191)
* Enabling AutoTokenizer for HubertConfig. (#12198)
* Use yaml to create metadata (#12185)
* Use yaml to create metadata
* Fix typo
* Remove pin
* [Docs] fixed broken link (#12205)
* fixed broken link
* Update docs/source/benchmarks.rst
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Update docs/source/benchmarks.rst
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Pipeline update & tests (#12207)
* Improve detr (#12147)
* Remove unused variables
* Improve docs
* Fix docs of segmentation masks
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Add link to the course (#12229)
* Support for torch 1.9.0 (#12224)
* Support for torch 1.9.0
* Torch scatter for 1.9.0
* Github Actions run on 1.9.0
* fix pt-1.9.0 `add_` deprecation (#12217)
* fix pt-1.9.0 add_ deprecation
* add () for clarity
* Trigger CI
* require_version(torch
* Release: v4.7.0
* Docs for v4.8.0
* AutoTokenizer: infer the class from the tokenizer config if possible (#12208)
* AutoTokenizer: infer the class from the tokenizer config if possible
* Add tests
* Update src/transformers/models/auto/tokenization_auto.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* update desc for map in all examples (#12226)
* update desc for map in all examples
* added plm
* suggestions
* [Flax] FlaxAutoModelForSeq2SeqLM (#12228)
* add FlaxAutoModelForSeq2SeqLM
* [FlaxBart] few small fixes (#12247)
* boom boom
* remove flax clip example
* few small fixes
* Depreciate pythonic Mish and support PyTorch 1.9 version of Mish (#12240)
* Moved Mish to Torch 1.9 version
* Run black formatting
* [t5 doc] make the example work out of the box (#12239)
* [run_clm.py] restore caching
* style
* [t5 doc] make the example work out of the box
This PR expands the training example to include the correct model type for the example to work, e.g. with `T5Model` this example will break.
* Update docs/source/model_doc/t5.rst
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* expand the other example
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* Fix the scheduled CI
* Better CI feedback (#12279)
* Better run ID
* Only part of CI
* Revert "Only part of CI"
This reverts commit
|
||
---|---|---|
.circleci | ||
.github | ||
docker | ||
docs | ||
examples | ||
model_cards | ||
notebooks | ||
scripts | ||
src/transformers | ||
templates | ||
tests | ||
utils | ||
.coveragerc | ||
.gitattributes | ||
.gitignore | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
hubconf.py | ||
ISSUES.md | ||
LICENSE | ||
Makefile | ||
MANIFEST.in | ||
pyproject.toml | ||
README_zh-hans.md | ||
README_zh-hant.md | ||
README.md | ||
setup.cfg | ||
setup.py | ||
valohai.yaml |
State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow
🤗 Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation and more in over 100 languages. Its aim is to make cutting-edge NLP easier to use for everyone.
🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
🤗 Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other.
Online demos
You can test most of our models directly on their pages from the model hub. We also offer private model hosting, versioning, & an inference API for public and private models.
Here are a few examples:
- Masked word completion with BERT
- Name Entity Recognition with Electra
- Text generation with GPT-2
- Natural Language Inference with RoBERTa
- Summarization with BART
- Question answering with DistilBERT
- Translation with T5
Write With Transformer, built by the Hugging Face team, is the official demo of this repo’s text generation capabilities.
If you are looking for custom support from the Hugging Face team

Quick tour
To immediately use a model on a given text, we provide the pipeline
API. Pipelines group together a pretrained model with the preprocessing that was used during that model's training. Here is how to quickly use a pipeline to classify positive versus negative texts:
>>> from transformers import pipeline
# Allocate a pipeline for sentiment-analysis
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
The second line of code downloads and caches the pretrained model used by the pipeline, while the third evaluates it on the given text. Here the answer is "positive" with a confidence of 99.97%.
Many NLP tasks have a pre-trained pipeline
ready to go. For example, we can easily extract question answers given context:
>>> from transformers import pipeline
# Allocate a pipeline for question-answering
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
In addition to the answer, the pretrained model used here returned its confidence score, along with the start position and end position of the answer in the tokenized sentence. You can learn more about the tasks supported by the pipeline
API in this tutorial.
To download and use any of the pretrained models on your given task, all it takes is three lines of code. Here is the PyTorch version:
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = AutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
And here is the equivalent code for TensorFlow:
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
The tokenizer is responsible for all the preprocessing the pretrained model expects, and can be called directly on a single string (as in the above examples) or a list. It will output a dictionary that you can use in downstream code or simply directly pass to your model using the ** argument unpacking operator.
The model itself is a regular Pytorch nn.Module
or a TensorFlow tf.keras.Model
(depending on your backend) which you can use normally. This tutorial explains how to integrate such a model into a classic PyTorch or TensorFlow training loop, or how to use our Trainer
API to quickly fine-tune on a new dataset.
Why should I use transformers?
-
Easy-to-use state-of-the-art models:
- High performance on NLU and NLG tasks.
- Low barrier to entry for educators and practitioners.
- Few user-facing abstractions with just three classes to learn.
- A unified API for using all our pretrained models.
-
Lower compute costs, smaller carbon footprint:
- Researchers can share trained models instead of always retraining.
- Practitioners can reduce compute time and production costs.
- Dozens of architectures with over 2,000 pretrained models, some in more than 100 languages.
-
Choose the right framework for every part of a model's lifetime:
- Train state-of-the-art models in 3 lines of code.
- Move a single model between TF2.0/PyTorch frameworks at will.
- Seamlessly pick the right framework for training, evaluation and production.
-
Easily customize a model or an example to your needs:
- We provide examples for each architecture to reproduce the results published by its original authors.
- Model internals are exposed as consistently as possible.
- Model files can be used independently of the library for quick experiments.
Why shouldn't I use transformers?
- This library is not a modular toolbox of building blocks for neural nets. The code in the model files is not refactored with additional abstractions on purpose, so that researchers can quickly iterate on each of the models without diving into additional abstractions/files.
- The training API is not intended to work on any model but is optimized to work with the models provided by the library. For generic machine learning loops, you should use another library.
- While we strive to present as many use cases as possible, the scripts in our examples folder are just that: examples. It is expected that they won't work out-of-the box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs.
Installation
With pip
This repository is tested on Python 3.6+, Flax 0.3.2+, PyTorch 1.3.1+ and TensorFlow 2.3+.
You should install 🤗 Transformers in a virtual environment. If you're unfamiliar with Python virtual environments, check out the user guide.
First, create a virtual environment with the version of Python you're going to use and activate it.
Then, you will need to install at least one of Flax, PyTorch or TensorFlow. Please refer to TensorFlow installation page, PyTorch installation page and/or Flax installation page regarding the specific install command for your platform.
When one of those backends has been installed, 🤗 Transformers can be installed using pip as follows:
pip install transformers
If you'd like to play with the examples or need the bleeding edge of the code and can't wait for a new release, you must install the library from source.
With conda
Since Transformers version v4.0.0, we now have a conda channel: huggingface
.
🤗 Transformers can be installed using conda as follows:
conda install -c huggingface transformers
Follow the installation pages of Flax, PyTorch or TensorFlow to see how to install them with conda.
Model architectures
All the model checkpoints provided by 🤗 Transformers are seamlessly integrated from the huggingface.co model hub where they are uploaded directly by users and organizations.
Current number of checkpoints:
🤗 Transformers currently provides the following architectures (see here for a high-level summary of each them):
- ALBERT (from Google Research and the Toyota Technological Institute at Chicago) released with the paper ALBERT: A Lite BERT for Self-supervised Learning of Language Representations, by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
- BART (from Facebook) released with the paper BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
- BARThez (from École polytechnique) released with the paper BARThez: a Skilled Pretrained French Sequence-to-Sequence Model by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
- BERT (from Google) released with the paper BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
- BERT For Sequence Generation (from Google) released with the paper Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
- BigBird-RoBERTa (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
- BigBird-Pegasus (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
- Blenderbot (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
- BlenderbotSmall (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
- BORT (from Alexa) released with the paper Optimal Subarchitecture Extraction For BERT by Adrian de Wynter and Daniel J. Perry.
- ByT5 (from Google Research) released with the paper ByT5: Towards a token-free future with pre-trained byte-to-byte models by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
- CamemBERT (from Inria/Facebook/Sorbonne) released with the paper CamemBERT: a Tasty French Language Model by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
- CANINE (from Google Research) released with the paper CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
- CLIP (from OpenAI) released with the paper Learning Transferable Visual Models From Natural Language Supervision by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
- ConvBERT (from YituTech) released with the paper ConvBERT: Improving BERT with Span-based Dynamic Convolution by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
- CPM (from Tsinghua University) released with the paper CPM: A Large-scale Generative Chinese Pre-trained Language Model by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
- CTRL (from Salesforce) released with the paper CTRL: A Conditional Transformer Language Model for Controllable Generation by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
- DeBERTa (from Microsoft) released with the paper DeBERTa: Decoding-enhanced BERT with Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
- DeBERTa-v2 (from Microsoft) released with the paper DeBERTa: Decoding-enhanced BERT with Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
- DeiT (from Facebook) released with the paper Training data-efficient image transformers & distillation through attention by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
- DETR (from Facebook) released with the paper End-to-End Object Detection with Transformers by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
- DialoGPT (from Microsoft Research) released with the paper DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
- DistilBERT (from HuggingFace), released together with the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into DistilGPT2, RoBERTa into DistilRoBERTa, Multilingual BERT into DistilmBERT and a German version of DistilBERT.
- DPR (from Facebook) released with the paper Dense Passage Retrieval for Open-Domain Question Answering by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
- ELECTRA (from Google Research/Stanford University) released with the paper ELECTRA: Pre-training text encoders as discriminators rather than generators by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
- FlauBERT (from CNRS) released with the paper FlauBERT: Unsupervised Language Model Pre-training for French by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
- Funnel Transformer (from CMU/Google Brain) released with the paper Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
- GPT (from OpenAI) released with the paper Improving Language Understanding by Generative Pre-Training by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
- GPT-2 (from OpenAI) released with the paper Language Models are Unsupervised Multitask Learners by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
- GPT Neo (from EleutherAI) released in the repository EleutherAI/gpt-neo by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
- Hubert (from Facebook) released with the paper HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
- I-BERT (from Berkeley) released with the paper I-BERT: Integer-only BERT Quantization by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer
- LayoutLM (from Microsoft Research Asia) released with the paper LayoutLM: Pre-training of Text and Layout for Document Image Understanding by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
- LED (from AllenAI) released with the paper Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
- Longformer (from AllenAI) released with the paper Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
- LUKE (from Studio Ousia) released with the paper LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
- LXMERT (from UNC Chapel Hill) released with the paper LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering by Hao Tan and Mohit Bansal.
- M2M100 (from Facebook) released with the paper Beyond English-Centric Multilingual Machine Translation by by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
- MarianMT Machine translation models trained using OPUS data by Jörg Tiedemann. The Marian Framework is being developed by the Microsoft Translator Team.
- MBart (from Facebook) released with the paper Multilingual Denoising Pre-training for Neural Machine Translation by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
- MBart-50 (from Facebook) released with the paper Multilingual Translation with Extensible Multilingual Pretraining and Finetuning by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
- Megatron-BERT (from NVIDIA) released with the paper Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
- Megatron-GPT2 (from NVIDIA) released with the paper Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
- MPNet (from Microsoft Research) released with the paper MPNet: Masked and Permuted Pre-training for Language Understanding by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
- MT5 (from Google AI) released with the paper mT5: A massively multilingual pre-trained text-to-text transformer by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
- Pegasus (from Google) released with the paper PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization> by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
- ProphetNet (from Microsoft Research) released with the paper ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
- Reformer (from Google Research) released with the paper Reformer: The Efficient Transformer by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
- RemBERT (from Google Research) released with the paper Rethinking embedding coupling in pre-trained language models by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
- RoBERTa (from Facebook), released together with the paper a Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
- RoFormer (from ZhuiyiTechnology), released together with the paper a RoFormer: Enhanced Transformer with Rotary Position Embedding by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
- SpeechToTextTransformer (from Facebook), released together with the paper fairseq S2T: Fast Speech-to-Text Modeling with fairseq by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
- SqueezeBert released with the paper SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
- T5 (from Google AI) released with the paper Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
- TAPAS (from Google AI) released with the paper TAPAS: Weakly Supervised Table Parsing via Pre-training by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
- Transformer-XL (from Google/CMU) released with the paper Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
- Vision Transformer (ViT) (from Google AI) released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
- VisualBERT (from UCLA NLP) released with the paper VisualBERT: A Simple and Performant Baseline for Vision and Language by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
- Wav2Vec2 (from Facebook AI) released with the paper wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
- XLM (from Facebook) released together with the paper Cross-lingual Language Model Pretraining by Guillaume Lample and Alexis Conneau.
- XLM-ProphetNet (from Microsoft Research) released with the paper ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
- XLM-RoBERTa (from Facebook AI), released together with the paper Unsupervised Cross-lingual Representation Learning at Scale by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
- XLNet (from Google/CMU) released with the paper XLNet: Generalized Autoregressive Pretraining for Language Understanding by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
- XLSR-Wav2Vec2 (from Facebook AI) released with the paper Unsupervised Cross-Lingual Representation Learning For Speech Recognition by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
- Want to contribute a new model? We have added a detailed guide and templates to guide you in the process of adding a new model. You can find them in the
templates
folder of the repository. Be sure to check the contributing guidelines and contact the maintainers or open an issue to collect feedbacks before starting your PR.
To check if each model has an implementation in Flax, PyTorch or TensorFlow, or has an associated tokenizer backed by the 🤗 Tokenizers library, refer to this table.
These implementations have been tested on several datasets (see the example scripts) and should match the performance of the original implementations. You can find more details on performance in the Examples section of the documentation.
Learn more
Section | Description |
---|---|
Documentation | Full API documentation and tutorials |
Task summary | Tasks supported by 🤗 Transformers |
Preprocessing tutorial | Using the Tokenizer class to prepare data for the models |
Training and fine-tuning | Using the models provided by 🤗 Transformers in a PyTorch/TensorFlow training loop and the Trainer API |
Quick tour: Fine-tuning/usage scripts | Example scripts for fine-tuning models on a wide range of tasks |
Model sharing and uploading | Upload and share your fine-tuned models with the community |
Migration | Migrate to 🤗 Transformers from pytorch-transformers or pytorch-pretrained-bert |
Citation
We now have a paper you can cite for the 🤗 Transformers library:
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}