transformers/tests/models/blip/test_processor_blip.py
Younes Belkada 0d284bd574
Add BLIP (#20716)
* add new model like

* add v1

* v1

* v1

* vision encoder logits match

* v2

* fix

* add docstring

* CI tests pass

* fix tests

* make fixup

* add to `toctree`

* fix processors

* fix processors

* fix doc

* fill title

* add content doc

* remove from tokenization auto

* fix config

* change order

* add `# Copied from`

* few fixes

- add correct license on modeling text
- remove dummy argument

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* replace name

* refactor a bit

* more refactor

* remove unused arg

* make fixup + remove some `# Adapted from ...`

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* more `# Copied from`

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* now `generate` supports no prefix

* remove `FeatureExtractor`

* fix path

* correct dependency

* fix tests

* few fixes

* add integration tests

* add correct conversion script

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* add `blip` to tokenization auto

* fix docstrings

* fix test + add image

* remove processor from uncorrect place

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* clean up a bit

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* clean pixel mask

* clean pixel mask

* fix `F`

* Update src/transformers/models/blip/modeling_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix output

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix pad token id

* remove `token_type_ids`

* make fixup

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* make fixup

* Apply suggestions from code review

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* add comments

* Update src/transformers/models/blip/modeling_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* remove `token_type_ids`

* make fixup

* better name

* replace with `image_attention_mask`

* refactor

* make fixup

* better docstring

* replace `answer_xx`

* remove ununsed args

* add `labels`

* add `labels`

* fix processing tests

* make fixup

* make fixup

* put correct repo

* remove `pad`

* remove `crop` and `center_crop`

* Update src/transformers/models/blip/image_processing_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix

* remove `size_divisor`

* fix weights `init`

* remove unneeded functions

* add suggestions

* minor changes

- change slow test output for PT 1.13
- docstring order

* replace `feature_extractor` by `image_processor`

* fix doctests

* fix weight init order + add fp16 slow test

* add `blip` to doctest

* add correct repo name and fix test

* Update src/transformers/models/blip/processing_blip.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix tests

* use `convert_to_rgb` from `image_transforms`

* make fixup

* fix large loading issue

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2022-12-21 09:39:10 +01:00

152 lines
5.6 KiB
Python

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class BlipProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = BlipImageProcessor()
tokenizer = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
processor = BlipProcessor(image_processor, tokenizer)
processor.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_image_inputs(self):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
return image_inputs
def test_save_load_pretrained_additional_features(self):
processor = BlipProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = BlipProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, BlipImageProcessor)
def test_image_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor)
image_input = self.prepare_image_inputs()
input_feat_extract = image_processor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str, return_token_type_ids=False)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask"])
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask"])