mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Add BLIP (#20716)
* add new model like * add v1 * v1 * v1 * vision encoder logits match * v2 * fix * add docstring * CI tests pass * fix tests * make fixup * add to `toctree` * fix processors * fix processors * fix doc * fill title * add content doc * remove from tokenization auto * fix config * change order * add `# Copied from` * few fixes - add correct license on modeling text - remove dummy argument * Apply suggestions from code review Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * replace name * refactor a bit * more refactor * remove unused arg * make fixup + remove some `# Adapted from ...` * Apply suggestions from code review Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * more `# Copied from` * Apply suggestions from code review Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * now `generate` supports no prefix * remove `FeatureExtractor` * fix path * correct dependency * fix tests * few fixes * add integration tests * add correct conversion script * Apply suggestions from code review Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * add `blip` to tokenization auto * fix docstrings * fix test + add image * remove processor from uncorrect place * Apply suggestions from code review Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * clean up a bit * Apply suggestions from code review Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * clean pixel mask * clean pixel mask * fix `F` * Update src/transformers/models/blip/modeling_blip.py Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * fix output * Apply suggestions from code review Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * fix pad token id * remove `token_type_ids` * make fixup * Apply suggestions from code review Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * make fixup * Apply suggestions from code review Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * add comments * Update src/transformers/models/blip/modeling_blip.py Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * remove `token_type_ids` * make fixup * better name * replace with `image_attention_mask` * refactor * make fixup * better docstring * replace `answer_xx` * remove ununsed args * add `labels` * add `labels` * fix processing tests * make fixup * make fixup * put correct repo * remove `pad` * remove `crop` and `center_crop` * Update src/transformers/models/blip/image_processing_blip.py Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * fix * remove `size_divisor` * fix weights `init` * remove unneeded functions * add suggestions * minor changes - change slow test output for PT 1.13 - docstring order * replace `feature_extractor` by `image_processor` * fix doctests * fix weight init order + add fp16 slow test * add `blip` to doctest * add correct repo name and fix test * Update src/transformers/models/blip/processing_blip.py Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> * fix tests * use `convert_to_rgb` from `image_transforms` * make fixup * fix large loading issue Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
This commit is contained in:
parent
3be028bc9d
commit
0d284bd574
@ -277,6 +277,7 @@ Current number of checkpoints: ** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
|
||||
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BLIP](https://huggingface.co/docs/transformers/main/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
|
||||
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
|
||||
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
|
||||
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
|
||||
|
@ -277,6 +277,7 @@ Número actual de puntos de control: ** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
|
||||
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BLIP](https://huggingface.co/docs/transformers/main/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
|
||||
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
|
||||
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
|
||||
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
|
||||
|
@ -250,6 +250,7 @@ conda install -c huggingface transformers
|
||||
1. **[BiT](https://huggingface.co/docs/transformers/main/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
|
||||
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (फेसबुक से) साथ में कागज [एक ओपन-डोमेन चैटबॉट बनाने की विधि](https://arxiv.org /abs/2004.13637) स्टीफन रोलर, एमिली दीनन, नमन गोयल, दा जू, मैरी विलियमसन, यिनहान लियू, जिंग जू, मायल ओट, कर्ट शस्टर, एरिक एम। स्मिथ, वाई-लैन बॉरो, जेसन वेस्टन द्वारा।
|
||||
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (फेसबुक से) साथ में पेपर [एक ओपन-डोमेन चैटबॉट बनाने की रेसिपी](https://arxiv .org/abs/2004.13637) स्टीफन रोलर, एमिली दीनन, नमन गोयल, दा जू, मैरी विलियमसन, यिनहान लियू, जिंग जू, मायल ओट, कर्ट शस्टर, एरिक एम स्मिथ, वाई-लैन बॉरो, जेसन वेस्टन द्वारा।
|
||||
1. **[BLIP](https://huggingface.co/docs/transformers/main/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
|
||||
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigSicence Workshop](https://bigscience.huggingface.co/).
|
||||
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (एलेक्सा से) कागज के साथ [बीईआरटी के लिए ऑप्टिमल सबआर्किटेक्चर एक्सट्रैक्शन](https://arxiv.org/abs/ 2010.10499) एड्रियन डी विंटर और डैनियल जे पेरी द्वारा।
|
||||
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (Google अनुसंधान से) साथ में कागज [ByT5: पूर्व-प्रशिक्षित बाइट-टू-बाइट मॉडल के साथ एक टोकन-मुक्त भविष्य की ओर] (https://arxiv.org/abs/2105.13626) Linting Xue, Aditya Barua, Noah Constant, रामी अल-रफू, शरण नारंग, मिहिर काले, एडम रॉबर्ट्स, कॉलिन रैफेल द्वारा पोस्ट किया गया।
|
||||
|
@ -312,6 +312,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
|
||||
1. **[BiT](https://huggingface.co/docs/transformers/main/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
|
||||
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BLIP](https://huggingface.co/docs/transformers/main/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
|
||||
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
|
||||
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
|
||||
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
|
||||
|
@ -227,6 +227,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
|
||||
1. **[BiT](https://huggingface.co/docs/transformers/main/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
|
||||
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BLIP](https://huggingface.co/docs/transformers/main/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
|
||||
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
|
||||
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
|
||||
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
|
||||
|
@ -251,6 +251,7 @@ conda install -c huggingface transformers
|
||||
1. **[BiT](https://huggingface.co/docs/transformers/main/model_doc/bit)** (来自 Google AI) 伴随论文 [Big Transfer (BiT) 由 Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby 发布。
|
||||
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
|
||||
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (来自 Facebook) 伴随论文 [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) 由 Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston 发布。
|
||||
1. **[BLIP](https://huggingface.co/docs/transformers/main/model_doc/blip)** (来自 Salesforce) 伴随论文 [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) 由 Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi 发布。
|
||||
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
|
||||
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (来自 Alexa) 伴随论文 [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) 由 Adrian de Wynter and Daniel J. Perry 发布。
|
||||
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (来自 Google Research) 伴随论文 [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) 由 Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel 发布。
|
||||
|
@ -263,6 +263,7 @@ conda install -c huggingface transformers
|
||||
1. **[BiT](https://huggingface.co/docs/transformers/main/model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
|
||||
1. **[Blenderbot](https://huggingface.co/docs/transformers/model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BlenderbotSmall](https://huggingface.co/docs/transformers/model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BLIP](https://huggingface.co/docs/transformers/main/model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
|
||||
1. **[BLOOM](https://huggingface.co/docs/transformers/model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
|
||||
1. **[BORT](https://huggingface.co/docs/transformers/model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
|
||||
1. **[ByT5](https://huggingface.co/docs/transformers/model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
|
||||
|
@ -498,6 +498,8 @@
|
||||
title: Audio models
|
||||
- isExpanded: false
|
||||
sections:
|
||||
- local: model_doc/blip
|
||||
title: BLIP
|
||||
- local: model_doc/chinese_clip
|
||||
title: Chinese-CLIP
|
||||
- local: model_doc/clip
|
||||
|
@ -64,6 +64,7 @@ The documentation is organized into five sections:
|
||||
1. **[BiT](model_doc/bit)** (from Google AI) released with the paper [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
|
||||
1. **[Blenderbot](model_doc/blenderbot)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BlenderbotSmall](model_doc/blenderbot-small)** (from Facebook) released with the paper [Recipes for building an open-domain chatbot](https://arxiv.org/abs/2004.13637) by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
|
||||
1. **[BLIP](model_doc/blip)** (from Salesforce) released with the paper [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
|
||||
1. **[BLOOM](model_doc/bloom)** (from BigScience workshop) released by the [BigScience Workshop](https://bigscience.huggingface.co/).
|
||||
1. **[BORT](model_doc/bort)** (from Alexa) released with the paper [Optimal Subarchitecture Extraction For BERT](https://arxiv.org/abs/2010.10499) by Adrian de Wynter and Daniel J. Perry.
|
||||
1. **[ByT5](model_doc/byt5)** (from Google Research) released with the paper [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626) by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
|
||||
@ -239,6 +240,7 @@ Flax), PyTorch, and/or TensorFlow.
|
||||
| BiT | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| BLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| BLOOM | ❌ | ✅ | ✅ | ❌ | ❌ |
|
||||
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
|
92
docs/source/en/model_doc/blip.mdx
Normal file
92
docs/source/en/model_doc/blip.mdx
Normal file
@ -0,0 +1,92 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
-->
|
||||
|
||||
# BLIP
|
||||
|
||||
## Overview
|
||||
|
||||
The BLIP model was proposed in [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
|
||||
|
||||
BLIP is a model that is able to perform various multi-modal tasks including
|
||||
- Visual Question Answering
|
||||
- Image-Text retrieval (Image-text matching)
|
||||
- Image Captioning
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks.
|
||||
However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
|
||||
|
||||

|
||||
|
||||
This model was contributed by [ybelkada](https://huggingface.co/ybelkada).
|
||||
The original code can be found [here](https://github.com/salesforce/BLIP).
|
||||
|
||||
|
||||
## BlipConfig
|
||||
|
||||
[[autodoc]] BlipConfig
|
||||
- from_text_vision_configs
|
||||
|
||||
## BlipTextConfig
|
||||
|
||||
[[autodoc]] BlipTextConfig
|
||||
|
||||
## BlipVisionConfig
|
||||
|
||||
[[autodoc]] BlipVisionConfig
|
||||
|
||||
## BlipProcessor
|
||||
|
||||
[[autodoc]] BlipProcessor
|
||||
|
||||
|
||||
## BlipImageProcessor
|
||||
|
||||
[[autodoc]] BlipImageProcessor
|
||||
- preprocess
|
||||
|
||||
## BlipModel
|
||||
|
||||
[[autodoc]] BlipModel
|
||||
- forward
|
||||
- get_text_features
|
||||
- get_image_features
|
||||
|
||||
## BlipTextModel
|
||||
|
||||
[[autodoc]] BlipTextModel
|
||||
- forward
|
||||
|
||||
|
||||
## BlipVisionModel
|
||||
|
||||
[[autodoc]] BlipVisionModel
|
||||
- forward
|
||||
|
||||
|
||||
## BlipForConditionalGeneration
|
||||
|
||||
[[autodoc]] BlipForConditionalGeneration
|
||||
- forward
|
||||
|
||||
|
||||
## BlipForImageTextRetrieval
|
||||
|
||||
[[autodoc]] BlipForImageTextRetrieval
|
||||
- forward
|
||||
|
||||
|
||||
## BlipForQuestionAnswering
|
||||
|
||||
[[autodoc]] BlipForQuestionAnswering
|
||||
- forward
|
@ -169,6 +169,13 @@ _import_structure = {
|
||||
"BlenderbotSmallConfig",
|
||||
"BlenderbotSmallTokenizer",
|
||||
],
|
||||
"models.blip": [
|
||||
"BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
||||
"BlipConfig",
|
||||
"BlipProcessor",
|
||||
"BlipTextConfig",
|
||||
"BlipVisionConfig",
|
||||
],
|
||||
"models.bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig"],
|
||||
"models.bort": [],
|
||||
"models.byt5": ["ByT5Tokenizer"],
|
||||
@ -754,6 +761,7 @@ else:
|
||||
_import_structure["image_utils"] = ["ImageFeatureExtractionMixin"]
|
||||
_import_structure["models.beit"].extend(["BeitFeatureExtractor", "BeitImageProcessor"])
|
||||
_import_structure["models.bit"].extend(["BitImageProcessor"])
|
||||
_import_structure["models.blip"].extend(["BlipImageProcessor"])
|
||||
_import_structure["models.chinese_clip"].extend(["ChineseCLIPFeatureExtractor", "ChineseCLIPImageProcessor"])
|
||||
_import_structure["models.clip"].extend(["CLIPFeatureExtractor", "CLIPImageProcessor"])
|
||||
_import_structure["models.conditional_detr"].extend(
|
||||
@ -1095,6 +1103,18 @@ else:
|
||||
"BlenderbotSmallPreTrainedModel",
|
||||
]
|
||||
)
|
||||
_import_structure["models.blip"].extend(
|
||||
[
|
||||
"BLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
"BlipForConditionalGeneration",
|
||||
"BlipForImageTextRetrieval",
|
||||
"BlipForQuestionAnswering",
|
||||
"BlipModel",
|
||||
"BlipPreTrainedModel",
|
||||
"BlipTextModel",
|
||||
"BlipVisionModel",
|
||||
]
|
||||
)
|
||||
_import_structure["models.bloom"].extend(
|
||||
[
|
||||
"BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
@ -3491,6 +3511,13 @@ if TYPE_CHECKING:
|
||||
BlenderbotSmallConfig,
|
||||
BlenderbotSmallTokenizer,
|
||||
)
|
||||
from .models.blip import (
|
||||
BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
||||
BlipConfig,
|
||||
BlipProcessor,
|
||||
BlipTextConfig,
|
||||
BlipVisionConfig,
|
||||
)
|
||||
from .models.bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig
|
||||
from .models.byt5 import ByT5Tokenizer
|
||||
from .models.camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig
|
||||
@ -4010,6 +4037,7 @@ if TYPE_CHECKING:
|
||||
from .image_utils import ImageFeatureExtractionMixin
|
||||
from .models.beit import BeitFeatureExtractor, BeitImageProcessor
|
||||
from .models.bit import BitImageProcessor
|
||||
from .models.blip import BlipImageProcessor
|
||||
from .models.chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
|
||||
from .models.clip import CLIPFeatureExtractor, CLIPImageProcessor
|
||||
from .models.conditional_detr import ConditionalDetrFeatureExtractor, ConditionalDetrImageProcessor
|
||||
@ -4299,6 +4327,16 @@ if TYPE_CHECKING:
|
||||
BlenderbotSmallModel,
|
||||
BlenderbotSmallPreTrainedModel,
|
||||
)
|
||||
from .models.blip import (
|
||||
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
BlipForConditionalGeneration,
|
||||
BlipForImageTextRetrieval,
|
||||
BlipForQuestionAnswering,
|
||||
BlipModel,
|
||||
BlipPreTrainedModel,
|
||||
BlipTextModel,
|
||||
BlipVisionModel,
|
||||
)
|
||||
from .models.bloom import (
|
||||
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
BloomForCausalLM,
|
||||
|
@ -34,6 +34,7 @@ from . import (
|
||||
bit,
|
||||
blenderbot,
|
||||
blenderbot_small,
|
||||
blip,
|
||||
bloom,
|
||||
bort,
|
||||
byt5,
|
||||
|
@ -41,6 +41,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
|
||||
("bit", "BitConfig"),
|
||||
("blenderbot", "BlenderbotConfig"),
|
||||
("blenderbot-small", "BlenderbotSmallConfig"),
|
||||
("blip", "BlipConfig"),
|
||||
("bloom", "BloomConfig"),
|
||||
("camembert", "CamembertConfig"),
|
||||
("canine", "CanineConfig"),
|
||||
@ -199,6 +200,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
|
||||
("bit", "BIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
("blenderbot", "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
("blenderbot-small", "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
("blip", "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
("bloom", "BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
("camembert", "CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
("canine", "CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP"),
|
||||
@ -346,6 +348,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
|
||||
("bit", "BiT"),
|
||||
("blenderbot", "Blenderbot"),
|
||||
("blenderbot-small", "BlenderbotSmall"),
|
||||
("blip", "BLIP"),
|
||||
("bloom", "BLOOM"),
|
||||
("bort", "BORT"),
|
||||
("byt5", "ByT5"),
|
||||
|
@ -39,6 +39,7 @@ IMAGE_PROCESSOR_MAPPING_NAMES = OrderedDict(
|
||||
[
|
||||
("beit", "BeitImageProcessor"),
|
||||
("bit", "BitImageProcessor"),
|
||||
("blip", "BlipImageProcessor"),
|
||||
("chinese_clip", "ChineseCLIPImageProcessor"),
|
||||
("clip", "CLIPImageProcessor"),
|
||||
("clipseg", "ViTImageProcessor"),
|
||||
|
@ -40,6 +40,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
|
||||
("bit", "BitModel"),
|
||||
("blenderbot", "BlenderbotModel"),
|
||||
("blenderbot-small", "BlenderbotSmallModel"),
|
||||
("blip", "BlipModel"),
|
||||
("bloom", "BloomModel"),
|
||||
("camembert", "CamembertModel"),
|
||||
("canine", "CanineModel"),
|
||||
@ -874,6 +875,7 @@ MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES = OrderedDict(
|
||||
_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
|
||||
[
|
||||
# Model for Zero Shot Image Classification mapping
|
||||
("blip", "BlipModel"),
|
||||
("chinese_clip", "ChineseCLIPModel"),
|
||||
("clip", "CLIPModel"),
|
||||
("clipseg", "CLIPSegModel"),
|
||||
|
@ -41,6 +41,7 @@ logger = logging.get_logger(__name__)
|
||||
|
||||
PROCESSOR_MAPPING_NAMES = OrderedDict(
|
||||
[
|
||||
("blip", "BLIPProcessor"),
|
||||
("chinese_clip", "ChineseCLIPProcessor"),
|
||||
("clip", "CLIPProcessor"),
|
||||
("clipseg", "CLIPSegProcessor"),
|
||||
|
@ -77,6 +77,7 @@ else:
|
||||
("biogpt", ("BioGptTokenizer", None)),
|
||||
("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")),
|
||||
("blenderbot-small", ("BlenderbotSmallTokenizer", None)),
|
||||
("blip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
|
||||
("bloom", (None, "BloomTokenizerFast" if is_tokenizers_available() else None)),
|
||||
("byt5", ("ByT5Tokenizer", None)),
|
||||
(
|
||||
|
91
src/transformers/models/blip/__init__.py
Normal file
91
src/transformers/models/blip/__init__.py
Normal file
@ -0,0 +1,91 @@
|
||||
# flake8: noqa
|
||||
# There's no way to ignore "F401 '...' imported but unused" warnings in this
|
||||
# module, but to preserve other warnings. So, don't check this module at all.
|
||||
|
||||
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
||||
|
||||
|
||||
_import_structure = {
|
||||
"configuration_blip": [
|
||||
"BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
||||
"BlipConfig",
|
||||
"BlipTextConfig",
|
||||
"BlipVisionConfig",
|
||||
],
|
||||
"processing_blip": ["BlipProcessor"],
|
||||
}
|
||||
|
||||
try:
|
||||
if not is_vision_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
pass
|
||||
else:
|
||||
_import_structure["image_processing_blip"] = ["BlipImageProcessor"]
|
||||
|
||||
|
||||
try:
|
||||
if not is_torch_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
pass
|
||||
else:
|
||||
_import_structure["modeling_blip"] = [
|
||||
"BLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
||||
"BlipModel",
|
||||
"BlipPreTrainedModel",
|
||||
"BlipForConditionalGeneration",
|
||||
"BlipForQuestionAnswering",
|
||||
"BlipVisionModel",
|
||||
"BlipTextModel",
|
||||
"BlipForImageTextRetrieval",
|
||||
]
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
|
||||
from .processing_blip import BlipProcessor
|
||||
|
||||
try:
|
||||
if not is_vision_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
pass
|
||||
else:
|
||||
from .image_processing_blip import BlipImageProcessor
|
||||
|
||||
try:
|
||||
if not is_torch_available():
|
||||
raise OptionalDependencyNotAvailable()
|
||||
except OptionalDependencyNotAvailable:
|
||||
pass
|
||||
else:
|
||||
from .modeling_blip import (
|
||||
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
||||
BlipForConditionalGeneration,
|
||||
BlipForImageTextRetrieval,
|
||||
BlipForQuestionAnswering,
|
||||
BlipModel,
|
||||
BlipPreTrainedModel,
|
||||
BlipTextModel,
|
||||
BlipVisionModel,
|
||||
)
|
||||
|
||||
else:
|
||||
import sys
|
||||
|
||||
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
403
src/transformers/models/blip/configuration_blip.py
Normal file
403
src/transformers/models/blip/configuration_blip.py
Normal file
@ -0,0 +1,403 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Blip model configuration"""
|
||||
|
||||
import copy
|
||||
import os
|
||||
from typing import Union
|
||||
|
||||
from ...configuration_utils import PretrainedConfig
|
||||
from ...utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
||||
"Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json",
|
||||
"Salesforce/blip-vqa-capfit-large": (
|
||||
"https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json"
|
||||
),
|
||||
"Salesforce/blip-image-captioning-base": (
|
||||
"https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json"
|
||||
),
|
||||
"Salesforce/blip-image-captioning-large": (
|
||||
"https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json"
|
||||
),
|
||||
"Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json",
|
||||
"Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json",
|
||||
"Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json",
|
||||
"Salesforce/blip-itm-large-flikr": (
|
||||
"https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json"
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
class BlipTextConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`BlipTextModel`]. It is used to instantiate a BLIP
|
||||
text model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
||||
with the defaults will yield a similar configuration to that of the `BlipText` used by the [base
|
||||
architectures](https://huggingface.co/Salesforce/blip-vqa-base).
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 30522):
|
||||
Vocabulary size of the `Blip` text model. Defines the number of different tokens that can be represented by
|
||||
the `inputs_ids` passed when calling [`BlipModel`].
|
||||
hidden_size (`int`, *optional*, defaults to 768):
|
||||
Dimensionality of the encoder layers and the pooler layer.
|
||||
encoder_hidden_size (`int`, *optional*, defaults to 768):
|
||||
Dimensionality of the encoder layers from the vision model.
|
||||
intermediate_size (`int`, *optional*, defaults to 3072):
|
||||
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 8):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 77):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||||
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults
|
||||
to 1e-5): The epsilon used by the layer normalization layers.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
initializer_factor (`float``, *optional*, defaults to 1):
|
||||
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
||||
testing).
|
||||
bos_token_id (`int`, *optional*, defaults to 30522):
|
||||
The id of the `beginning-of-sequence` token.
|
||||
eos_token_id (`int`, *optional*, defaults to 2):
|
||||
The id of the `end-of-sequence` token.
|
||||
pad_token_id (`int`, *optional*, defaults to 0):
|
||||
The id of the `padding` token.
|
||||
sep_token_id (`int`, *optional*, defaults to 102):
|
||||
The id of the `separator` token.
|
||||
is_decoder (`bool`, *optional*, defaults to `False`):
|
||||
Whether the model is used as a decoder.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models).
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import BlipTextConfig, BlipTextModel
|
||||
|
||||
>>> # Initializing a BlipTextConfig with Salesforce/blip-vqa-base style configuration
|
||||
>>> configuration = BlipTextConfig()
|
||||
|
||||
>>> # Initializing a BlipTextModel (with random weights) from the Salesforce/blip-vqa-base style configuration
|
||||
>>> model = BlipTextModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
model_type = "blip_text_model"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=30524,
|
||||
hidden_size=768,
|
||||
encoder_hidden_size=768,
|
||||
intermediate_size=3072,
|
||||
projection_dim=768,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=8,
|
||||
max_position_embeddings=512,
|
||||
hidden_act="gelu",
|
||||
layer_norm_eps=1e-12,
|
||||
hidden_dropout_prob=0.0,
|
||||
attention_probs_dropout_prob=0.0,
|
||||
initializer_range=0.02,
|
||||
initializer_factor=1.0,
|
||||
bos_token_id=30522,
|
||||
eos_token_id=2,
|
||||
pad_token_id=0,
|
||||
sep_token_id=102,
|
||||
is_decoder=True,
|
||||
use_cache=True,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
sep_token_id=sep_token_id,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.encoder_hidden_size = encoder_hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.projection_dim = projection_dim
|
||||
self.hidden_dropout_prob = hidden_dropout_prob
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.initializer_factor = initializer_factor
|
||||
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||||
self.is_decoder = is_decoder
|
||||
self.use_cache = use_cache
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
||||
|
||||
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||||
|
||||
# get the text config dict if we are loading from BlipConfig
|
||||
if config_dict.get("model_type") == "blip":
|
||||
config_dict = config_dict["text_config"]
|
||||
|
||||
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||||
logger.warning(
|
||||
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||||
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||||
)
|
||||
|
||||
return cls.from_dict(config_dict, **kwargs)
|
||||
|
||||
|
||||
class BlipVisionConfig(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`BlipVisionModel`]. It is used to instantiate a
|
||||
BLIP vision model according to the specified arguments, defining the model architecture. Instantiating a
|
||||
configuration defaults will yield a similar configuration to that of the Blip-base
|
||||
[Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
hidden_size (`int`, *optional*, defaults to 768):
|
||||
Dimensionality of the encoder layers and the pooler layer.
|
||||
intermediate_size (`int`, *optional*, defaults to 3072):
|
||||
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||||
Number of hidden layers in the Transformer encoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 12):
|
||||
Number of attention heads for each attention layer in the Transformer encoder.
|
||||
image_size (`int`, *optional*, defaults to 224):
|
||||
The size (resolution) of each image.
|
||||
patch_size (`int`, *optional*, defaults to 32):
|
||||
The size (resolution) of each patch.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||||
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults
|
||||
to 1e-5): The epsilon used by the layer normalization layers.
|
||||
dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
initializer_factor (`float``, *optional*, defaults to 1):
|
||||
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
||||
testing).
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import BlipVisionConfig, BlipVisionModel
|
||||
|
||||
>>> # Initializing a BlipVisionConfig with Salesforce/blip-vqa-base style configuration
|
||||
>>> configuration = BlipVisionConfig()
|
||||
|
||||
>>> # Initializing a BlipVisionModel (with random weights) from the Salesforce/blip-vqa-base style configuration
|
||||
>>> model = BlipVisionModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "blip_vision_model"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size=768,
|
||||
intermediate_size=3072,
|
||||
projection_dim=512,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=12,
|
||||
num_channels=3,
|
||||
image_size=384,
|
||||
patch_size=16,
|
||||
hidden_act="gelu",
|
||||
layer_norm_eps=0.00001,
|
||||
dropout=0.0,
|
||||
attention_dropout=0.0,
|
||||
initializer_range=1e-10,
|
||||
initializer_factor=1.0,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.projection_dim = projection_dim
|
||||
self.dropout = dropout
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.num_channels = num_channels
|
||||
self.patch_size = patch_size
|
||||
self.image_size = image_size
|
||||
self.initializer_range = initializer_range
|
||||
self.initializer_factor = initializer_factor
|
||||
self.attention_dropout = attention_dropout
|
||||
self.layer_norm_eps = layer_norm_eps
|
||||
self.hidden_act = hidden_act
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
||||
|
||||
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||||
|
||||
# get the vision config dict if we are loading from BlipConfig
|
||||
if config_dict.get("model_type") == "blip":
|
||||
config_dict = config_dict["vision_config"]
|
||||
|
||||
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||||
logger.warning(
|
||||
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||||
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||||
)
|
||||
|
||||
return cls.from_dict(config_dict, **kwargs)
|
||||
|
||||
|
||||
class BlipConfig(PretrainedConfig):
|
||||
r"""
|
||||
[`BlipConfig`] is the configuration class to store the configuration of a [`BlipModel`]. It is used to instantiate
|
||||
a BLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
|
||||
a configuration with the defaults will yield a similar configuration to that of the BLIP-base
|
||||
[Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
Args:
|
||||
text_config (`dict`, *optional*):
|
||||
Dictionary of configuration options used to initialize [`BlipTextConfig`].
|
||||
vision_config (`dict`, *optional*):
|
||||
Dictionary of configuration options used to initialize [`BlipVisionConfig`].
|
||||
projection_dim (`int`, *optional*, defaults to 512):
|
||||
Dimentionality of text and vision projection layers.
|
||||
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
||||
The inital value of the *logit_scale* paramter. Default is used as per the original BLIP implementation.
|
||||
image_text_hidden_size (`int`, *optional*, defaults to 768):
|
||||
Dimentionality of the hidden state of the image-text fusion layer.
|
||||
kwargs (*optional*):
|
||||
Dictionary of keyword arguments.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import BlipConfig, BlipModel
|
||||
|
||||
>>> # Initializing a BlipConfig with Salesforce/blip-vqa-base style configuration
|
||||
>>> configuration = BlipConfig()
|
||||
|
||||
>>> # Initializing a BlipPModel (with random weights) from the Salesforce/blip-vqa-base style configuration
|
||||
>>> model = BlipModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
|
||||
>>> # We can also initialize a BlipConfig from a BlipTextConfig and a BlipVisionConfig
|
||||
|
||||
>>> # Initializing a BLIPText and BLIPVision configuration
|
||||
>>> config_text = BlipTextConfig()
|
||||
>>> config_vision = BlipVisionConfig()
|
||||
|
||||
>>> config = BlipConfig.from_text_vision_configs(config_text, config_vision)
|
||||
```"""
|
||||
|
||||
model_type = "blip"
|
||||
is_composition = True
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
text_config=None,
|
||||
vision_config=None,
|
||||
projection_dim=512,
|
||||
logit_scale_init_value=2.6592,
|
||||
image_text_hidden_size=256,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# If `_config_dict` exist, we use them for the backward compatibility.
|
||||
text_config_dict = kwargs.pop("text_config_dict", None)
|
||||
vision_config_dict = kwargs.pop("vision_config_dict", None)
|
||||
if text_config_dict is not None:
|
||||
text_config = text_config_dict
|
||||
if vision_config_dict is not None:
|
||||
vision_config = vision_config_dict
|
||||
|
||||
if text_config is None:
|
||||
text_config = {}
|
||||
logger.info("text_config is None. Initializing the BlipTextConfig with default values.")
|
||||
|
||||
if vision_config is None:
|
||||
vision_config = {}
|
||||
logger.info("vision_config is None. initializing the BlipVisionConfig with default values.")
|
||||
|
||||
self.text_config = BlipTextConfig(**text_config)
|
||||
self.vision_config = BlipVisionConfig(**vision_config)
|
||||
|
||||
self.text_config.encoder_hidden_size = self.vision_config.hidden_size
|
||||
|
||||
self.projection_dim = projection_dim
|
||||
self.logit_scale_init_value = logit_scale_init_value
|
||||
self.initializer_factor = 1.0
|
||||
self.initializer_range = 0.02
|
||||
self.image_text_hidden_size = image_text_hidden_size
|
||||
|
||||
@classmethod
|
||||
def from_text_vision_configs(cls, text_config: BlipTextConfig, vision_config: BlipVisionConfig, **kwargs):
|
||||
r"""
|
||||
Instantiate a [`BlipConfig`] (or a derived class) from blip text model configuration and blip vision model
|
||||
configuration.
|
||||
|
||||
Returns:
|
||||
[`BlipConfig`]: An instance of a configuration object
|
||||
"""
|
||||
|
||||
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
||||
|
||||
def to_dict(self):
|
||||
"""
|
||||
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
||||
|
||||
Returns:
|
||||
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
||||
"""
|
||||
output = copy.deepcopy(self.__dict__)
|
||||
output["text_config"] = self.text_config.to_dict()
|
||||
output["vision_config"] = self.vision_config.to_dict()
|
||||
output["model_type"] = self.__class__.model_type
|
||||
return output
|
@ -0,0 +1,191 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import re
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
|
||||
import requests
|
||||
|
||||
# git clone https://github.com/salesforce/BLIP.git
|
||||
from models.blip import blip_decoder
|
||||
from models.blip_itm import blip_itm
|
||||
from models.blip_vqa import blip_vqa
|
||||
from transformers import (
|
||||
BertTokenizer,
|
||||
BlipConfig,
|
||||
BlipForConditionalGeneration,
|
||||
BlipForImageTextRetrieval,
|
||||
BlipForQuestionAnswering,
|
||||
)
|
||||
|
||||
|
||||
def load_demo_image(image_size, device):
|
||||
img_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg"
|
||||
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
||||
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
||||
]
|
||||
)
|
||||
image = transform(raw_image).unsqueeze(0).to(device)
|
||||
return image
|
||||
|
||||
|
||||
def rename_key(key):
|
||||
if "visual_encoder" in key:
|
||||
key = re.sub("visual_encoder*", "vision_model.encoder", key)
|
||||
if "blocks" in key:
|
||||
key = re.sub(r"blocks", "layers", key)
|
||||
if "attn" in key:
|
||||
key = re.sub(r"attn", "self_attn", key)
|
||||
if "norm1" in key:
|
||||
key = re.sub(r"norm1", "layer_norm1", key)
|
||||
if "norm2" in key:
|
||||
key = re.sub(r"norm2", "layer_norm2", key)
|
||||
if "encoder.norm" in key:
|
||||
key = re.sub(r"encoder.norm", "post_layernorm", key)
|
||||
if "encoder.patch_embed.proj" in key:
|
||||
key = re.sub(r"encoder.patch_embed.proj", "embeddings.patch_embedding", key)
|
||||
|
||||
if "encoder.pos_embed" in key:
|
||||
key = re.sub(r"encoder.pos_embed", "embeddings.position_embedding", key)
|
||||
if "encoder.cls_token" in key:
|
||||
key = re.sub(r"encoder.cls_token", "embeddings.class_embedding", key)
|
||||
|
||||
if "self_attn" in key:
|
||||
key = re.sub(r"self_attn.proj", "self_attn.projection", key)
|
||||
|
||||
return key
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def convert_blip_checkpoint(pytorch_dump_folder_path, config_path=None):
|
||||
"""
|
||||
Copy/paste/tweak model's weights to transformers design.
|
||||
"""
|
||||
if config_path is not None:
|
||||
config = BlipConfig.from_pretrained(config_path)
|
||||
else:
|
||||
config = BlipConfig(projection_dim=512, text_config={}, vision_config={})
|
||||
|
||||
hf_model = BlipForConditionalGeneration(config).eval()
|
||||
|
||||
model_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth"
|
||||
|
||||
pt_model = blip_decoder(pretrained=model_url, image_size=384, vit="base")
|
||||
pt_model = pt_model.eval()
|
||||
|
||||
modified_state_dict = pt_model.state_dict()
|
||||
for key in modified_state_dict.copy():
|
||||
value = modified_state_dict.pop(key)
|
||||
renamed_key = rename_key(key)
|
||||
modified_state_dict[renamed_key] = value
|
||||
|
||||
hf_model.load_state_dict(modified_state_dict)
|
||||
|
||||
image_size = 384
|
||||
image = load_demo_image(image_size=image_size, device="cpu")
|
||||
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
||||
input_ids = tokenizer(["a picture of"]).input_ids
|
||||
|
||||
out = hf_model.generate(image, input_ids)
|
||||
|
||||
assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
|
||||
|
||||
out = hf_model.generate(image)
|
||||
|
||||
assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102]
|
||||
|
||||
if pytorch_dump_folder_path is not None:
|
||||
hf_model.save_pretrained(pytorch_dump_folder_path)
|
||||
|
||||
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
|
||||
model_url = (
|
||||
"https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth"
|
||||
)
|
||||
|
||||
vqa_model = blip_vqa(pretrained=model_url, image_size=image_size, vit="base")
|
||||
vqa_model.eval()
|
||||
|
||||
modified_state_dict = vqa_model.state_dict()
|
||||
for key in modified_state_dict.copy():
|
||||
value = modified_state_dict.pop(key)
|
||||
renamed_key = rename_key(key)
|
||||
modified_state_dict[renamed_key] = value
|
||||
|
||||
hf_vqa_model = BlipForQuestionAnswering(config)
|
||||
|
||||
hf_vqa_model.load_state_dict(modified_state_dict)
|
||||
|
||||
question = ["How many dogs are in this image?"]
|
||||
question_input_ids = tokenizer(question, return_tensors="pt").input_ids
|
||||
|
||||
answer = hf_vqa_model.generate(question_input_ids, image)
|
||||
print(tokenizer.decode(answer[0]))
|
||||
|
||||
assert tokenizer.decode(answer[0]) == "[UNK] 1 [SEP]"
|
||||
if pytorch_dump_folder_path is not None:
|
||||
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa")
|
||||
|
||||
model_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth"
|
||||
|
||||
itm_model = blip_itm(pretrained=model_url, image_size=image_size, vit="base")
|
||||
itm_model.eval()
|
||||
|
||||
modified_state_dict = itm_model.state_dict()
|
||||
for key in modified_state_dict.copy():
|
||||
value = modified_state_dict.pop(key)
|
||||
renamed_key = rename_key(key)
|
||||
modified_state_dict[renamed_key] = value
|
||||
|
||||
hf_itm_model = BlipForImageTextRetrieval(config)
|
||||
|
||||
question = ["A picture of a woman with a dog sitting in a beach"]
|
||||
question_input_ids = tokenizer(
|
||||
question,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
max_length=35,
|
||||
).input_ids
|
||||
|
||||
hf_itm_model.load_state_dict(modified_state_dict)
|
||||
hf_itm_model.eval()
|
||||
|
||||
out_itm = hf_itm_model(question_input_ids, image, use_itm_head=True)
|
||||
out = hf_itm_model(question_input_ids, image, use_itm_head=False)
|
||||
|
||||
assert out[0].item() == 0.2110687494277954
|
||||
assert torch.nn.functional.softmax(out_itm[0], dim=1)[:, 1].item() == 0.45698845386505127
|
||||
|
||||
if pytorch_dump_folder_path is not None:
|
||||
hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
|
||||
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
|
||||
args = parser.parse_args()
|
||||
|
||||
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
|
288
src/transformers/models/blip/image_processing_blip.py
Normal file
288
src/transformers/models/blip/image_processing_blip.py
Normal file
@ -0,0 +1,288 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Image processor class for BLIP."""
|
||||
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.utils import is_vision_available
|
||||
from transformers.utils.generic import TensorType
|
||||
|
||||
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
||||
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
|
||||
from ...image_utils import (
|
||||
IMAGENET_STANDARD_MEAN,
|
||||
IMAGENET_STANDARD_STD,
|
||||
ChannelDimension,
|
||||
ImageInput,
|
||||
PILImageResampling,
|
||||
is_batched,
|
||||
to_numpy_array,
|
||||
valid_images,
|
||||
)
|
||||
from ...utils import logging
|
||||
|
||||
|
||||
if is_vision_available():
|
||||
import PIL
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class BlipImageProcessor(BaseImageProcessor):
|
||||
r"""
|
||||
Constructs a BLIP image processor.
|
||||
|
||||
Args:
|
||||
do_resize (`bool`, *optional*, defaults to `True`):
|
||||
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
|
||||
`do_resize` parameter in the `preprocess` method.
|
||||
size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`):
|
||||
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
|
||||
method.
|
||||
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
||||
Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
|
||||
overridden by the `resample` parameter in the `preprocess` method.
|
||||
do_rescale (`bool`, *optional*, defaults to `True`):
|
||||
Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
|
||||
`do_rescale` parameter in the `preprocess` method.
|
||||
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
||||
Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
|
||||
overridden by the `rescale_factor` parameter in the `preprocess` method.
|
||||
do_normalize (`bool`, *optional*, defaults to `True`):
|
||||
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
||||
method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
|
||||
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
||||
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
||||
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
|
||||
overridden by the `image_mean` parameter in the `preprocess` method.
|
||||
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
||||
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
||||
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
||||
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
||||
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
||||
Whether to convert the image to RGB.
|
||||
"""
|
||||
|
||||
model_input_names = ["pixel_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
do_resize: bool = True,
|
||||
size: Dict[str, int] = None,
|
||||
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
||||
do_rescale: bool = True,
|
||||
rescale_factor: Union[int, float] = 1 / 255,
|
||||
do_normalize: bool = True,
|
||||
image_mean: Optional[Union[float, List[float]]] = None,
|
||||
image_std: Optional[Union[float, List[float]]] = None,
|
||||
do_convert_rgb: bool = True,
|
||||
**kwargs
|
||||
) -> None:
|
||||
|
||||
super().__init__(**kwargs)
|
||||
size = size if size is not None else {"height": 384, "width": 384}
|
||||
size = get_size_dict(size, default_to_square=True)
|
||||
|
||||
self.do_resize = do_resize
|
||||
self.size = size
|
||||
self.resample = resample
|
||||
self.do_rescale = do_rescale
|
||||
self.rescale_factor = rescale_factor
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
||||
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
||||
self.do_convert_rgb = do_convert_rgb
|
||||
|
||||
def resize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
size: Dict[str, int],
|
||||
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Resize an image.
|
||||
|
||||
Resizes the shorter side of the image to `size["shortest_edge"]` while preserving the aspect ratio. If the
|
||||
longer side is larger than the max size `(int(`size["shortest_edge"]` * 1333 / 800))`, the longer side is then
|
||||
resized to the max size while preserving the aspect ratio.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to resize.
|
||||
size (`Dict[str, int]`):
|
||||
Controls the size of the output image. Should be of the form `{"shortest_edge": int}`.
|
||||
resample (`PILImageResampling` filter, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
||||
Resampling filter to use when resiizing the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
size = get_size_dict(size, default_to_square=True)
|
||||
output_size = (size["width"], size["height"])
|
||||
return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs)
|
||||
|
||||
def rescale(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
scale: Union[int, float],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Rescale an image by a scale factor. image = image * scale.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to rescale.
|
||||
scale (`int` or `float`):
|
||||
Scale to apply to the image.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return rescale(image, scale=scale, data_format=data_format, **kwargs)
|
||||
|
||||
def normalize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
mean: Union[float, List[float]],
|
||||
std: Union[float, List[float]],
|
||||
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||||
**kwargs
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Normalize an image. image = (image - image_mean) / image_std.
|
||||
|
||||
Args:
|
||||
image (`np.ndarray`):
|
||||
Image to normalize.
|
||||
mean (`float` or `List[float]`):
|
||||
Image mean.
|
||||
std (`float` or `List[float]`):
|
||||
Image standard deviation.
|
||||
data_format (`str` or `ChannelDimension`, *optional*):
|
||||
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
||||
"""
|
||||
return normalize(image, mean=mean, std=std, data_format=data_format, **kwargs)
|
||||
|
||||
def preprocess(
|
||||
self,
|
||||
images: ImageInput,
|
||||
do_resize: Optional[bool] = None,
|
||||
size: Optional[Dict[str, int]] = None,
|
||||
resample: PILImageResampling = None,
|
||||
do_rescale: Optional[bool] = None,
|
||||
rescale_factor: Optional[float] = None,
|
||||
do_normalize: Optional[bool] = None,
|
||||
image_mean: Optional[Union[float, List[float]]] = None,
|
||||
image_std: Optional[Union[float, List[float]]] = None,
|
||||
return_tensors: Optional[Union[str, TensorType]] = None,
|
||||
do_convert_rgb: bool = None,
|
||||
data_format: ChannelDimension = ChannelDimension.FIRST,
|
||||
**kwargs,
|
||||
) -> PIL.Image.Image:
|
||||
"""
|
||||
Preprocess an image or batch of images.
|
||||
|
||||
Args:
|
||||
images (`ImageInput`):
|
||||
Image to preprocess.
|
||||
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
||||
Whether to resize the image.
|
||||
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
||||
Controls the size of the image after `resize`. The shortest edge of the image is resized to
|
||||
`size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
|
||||
is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
|
||||
edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
|
||||
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
||||
Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.
|
||||
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
||||
Whether to rescale the image values between [0 - 1].
|
||||
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
||||
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
||||
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
||||
Whether to normalize the image.
|
||||
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
||||
Image mean to normalize the image by if `do_normalize` is set to `True`.
|
||||
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
||||
Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
|
||||
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
||||
Whether to convert the image to RGB.
|
||||
return_tensors (`str` or `TensorType`, *optional*):
|
||||
The type of tensors to return. Can be one of:
|
||||
- Unset: Return a list of `np.ndarray`.
|
||||
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
||||
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
||||
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
||||
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
||||
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
||||
The channel dimension format for the output image. Can be one of:
|
||||
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||||
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||||
"""
|
||||
do_resize = do_resize if do_resize is not None else self.do_resize
|
||||
resample = resample if resample is not None else self.resample
|
||||
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
||||
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
||||
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
||||
image_mean = image_mean if image_mean is not None else self.image_mean
|
||||
image_std = image_std if image_std is not None else self.image_std
|
||||
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
||||
|
||||
size = size if size is not None else self.size
|
||||
size = get_size_dict(size, default_to_square=False)
|
||||
|
||||
if not is_batched(images):
|
||||
images = [images]
|
||||
|
||||
if not valid_images(images):
|
||||
raise ValueError(
|
||||
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
||||
"torch.Tensor, tf.Tensor or jax.ndarray."
|
||||
)
|
||||
|
||||
if do_resize and size is None or resample is None:
|
||||
raise ValueError("Size and resample must be specified if do_resize is True.")
|
||||
|
||||
if do_rescale and rescale_factor is None:
|
||||
raise ValueError("Rescale factor must be specified if do_rescale is True.")
|
||||
|
||||
if do_normalize and (image_mean is None or image_std is None):
|
||||
raise ValueError("Image mean and std must be specified if do_normalize is True.")
|
||||
|
||||
# PIL RGBA images are converted to RGB
|
||||
if do_convert_rgb:
|
||||
images = [convert_to_rgb(image) for image in images]
|
||||
|
||||
# All transformations expect numpy arrays.
|
||||
images = [to_numpy_array(image) for image in images]
|
||||
|
||||
if do_resize:
|
||||
images = [self.resize(image=image, size=size, resample=resample) for image in images]
|
||||
|
||||
if do_rescale:
|
||||
images = [self.rescale(image=image, scale=rescale_factor) for image in images]
|
||||
|
||||
if do_normalize:
|
||||
images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images]
|
||||
|
||||
images = [to_channel_dimension_format(image, data_format) for image in images]
|
||||
|
||||
encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
|
||||
|
||||
return encoded_outputs
|
1421
src/transformers/models/blip/modeling_blip.py
Normal file
1421
src/transformers/models/blip/modeling_blip.py
Normal file
File diff suppressed because it is too large
Load Diff
943
src/transformers/models/blip/modeling_blip_text.py
Normal file
943
src/transformers/models/blip/modeling_blip_text.py
Normal file
@ -0,0 +1,943 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The Salesforce Team Authors and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the BSD-3-clause license (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# https://opensource.org/licenses/BSD-3-Clause
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import math
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import Tensor, device, nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPastAndCrossAttentions,
|
||||
BaseModelOutputWithPoolingAndCrossAttentions,
|
||||
CausalLMOutputWithCrossAttentions,
|
||||
)
|
||||
from transformers.modeling_utils import (
|
||||
PreTrainedModel,
|
||||
apply_chunking_to_forward,
|
||||
find_pruneable_heads_and_indices,
|
||||
prune_linear_layer,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
|
||||
from .configuration_blip import BlipTextConfig
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L52
|
||||
class BlipTextEmbeddings(nn.Module):
|
||||
"""Construct the embeddings from word and position embeddings."""
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||||
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||||
|
||||
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||||
# any TensorFlow checkpoint file
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||||
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
||||
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||||
|
||||
self.config = config
|
||||
|
||||
def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0):
|
||||
if input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
else:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
|
||||
seq_length = input_shape[1]
|
||||
|
||||
if position_ids is None:
|
||||
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
||||
|
||||
if inputs_embeds is None:
|
||||
input_ids = input_ids.to(self.word_embeddings.weight.device)
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
|
||||
embeddings = inputs_embeds
|
||||
|
||||
if self.position_embedding_type == "absolute":
|
||||
position_embeddings = self.position_embeddings(position_ids)
|
||||
embeddings += position_embeddings
|
||||
embeddings = self.LayerNorm(embeddings)
|
||||
embeddings = self.dropout(embeddings)
|
||||
return embeddings
|
||||
|
||||
|
||||
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L97
|
||||
class BlipTextSelfAttention(nn.Module):
|
||||
def __init__(self, config, is_cross_attention):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
||||
raise ValueError(
|
||||
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
|
||||
% (config.hidden_size, config.num_attention_heads)
|
||||
)
|
||||
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||||
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||||
|
||||
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
if is_cross_attention:
|
||||
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
||||
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
|
||||
else:
|
||||
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
||||
|
||||
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||||
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||||
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
||||
|
||||
def save_attn_gradients(self, attn_gradients):
|
||||
self.attn_gradients = attn_gradients
|
||||
|
||||
def get_attn_gradients(self):
|
||||
return self.attn_gradients
|
||||
|
||||
def save_attention_map(self, attention_map):
|
||||
self.attention_map = attention_map
|
||||
|
||||
def get_attention_map(self):
|
||||
return self.attention_map
|
||||
|
||||
def transpose_for_scores(self, x):
|
||||
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
||||
x = x.view(*new_x_shape)
|
||||
return x.permute(0, 2, 1, 3)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
):
|
||||
mixed_query_layer = self.query(hidden_states)
|
||||
|
||||
# If this is instantiated as a cross-attention module, the keys
|
||||
# and values come from an encoder; the attention mask needs to be
|
||||
# such that the encoder's padding tokens are not attended to.
|
||||
is_cross_attention = encoder_hidden_states is not None
|
||||
|
||||
if is_cross_attention:
|
||||
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
||||
attention_mask = encoder_attention_mask
|
||||
elif past_key_value is not None:
|
||||
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||||
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
||||
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
||||
else:
|
||||
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||||
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||||
|
||||
query_layer = self.transpose_for_scores(mixed_query_layer)
|
||||
|
||||
past_key_value = (key_layer, value_layer)
|
||||
|
||||
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||||
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||||
|
||||
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||||
seq_length = hidden_states.size()[1]
|
||||
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
||||
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
||||
distance = position_ids_l - position_ids_r
|
||||
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
||||
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
||||
|
||||
if self.position_embedding_type == "relative_key":
|
||||
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||||
attention_scores = attention_scores + relative_position_scores
|
||||
elif self.position_embedding_type == "relative_key_query":
|
||||
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||||
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
||||
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
||||
|
||||
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||||
if attention_mask is not None:
|
||||
# Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function)
|
||||
attention_scores = attention_scores + attention_mask.to(attention_scores.device)
|
||||
|
||||
# Normalize the attention scores to probabilities.
|
||||
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
||||
|
||||
# This is actually dropping out entire tokens to attend to, which might
|
||||
# seem a bit unusual, but is taken from the original Transformer paper.
|
||||
attention_probs_dropped = self.dropout(attention_probs)
|
||||
|
||||
# Mask heads if we want to
|
||||
if head_mask is not None:
|
||||
attention_probs_dropped = attention_probs_dropped * head_mask
|
||||
|
||||
context_layer = torch.matmul(attention_probs_dropped, value_layer)
|
||||
|
||||
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||||
context_layer = context_layer.view(*new_context_layer_shape)
|
||||
|
||||
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||||
|
||||
outputs = outputs + (past_key_value,)
|
||||
return outputs
|
||||
|
||||
|
||||
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert -> BlipText
|
||||
class BlipTextSelfOutput(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
|
||||
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#242
|
||||
class BlipTextAttention(nn.Module):
|
||||
def __init__(self, config, is_cross_attention=False):
|
||||
super().__init__()
|
||||
self.self = BlipTextSelfAttention(config, is_cross_attention)
|
||||
self.output = BlipTextSelfOutput(config)
|
||||
self.pruned_heads = set()
|
||||
|
||||
def prune_heads(self, heads):
|
||||
if len(heads) == 0:
|
||||
return
|
||||
heads, index = find_pruneable_heads_and_indices(
|
||||
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
||||
)
|
||||
|
||||
# Prune linear layers
|
||||
self.self.query = prune_linear_layer(self.self.query, index)
|
||||
self.self.key = prune_linear_layer(self.self.key, index)
|
||||
self.self.value = prune_linear_layer(self.self.value, index)
|
||||
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||||
|
||||
# Update hyper params and store pruned heads
|
||||
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
||||
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
||||
self.pruned_heads = self.pruned_heads.union(heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
):
|
||||
self_outputs = self.self(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
attention_output = self.output(self_outputs[0], hidden_states)
|
||||
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
||||
return outputs
|
||||
|
||||
|
||||
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert -> BlipText
|
||||
class BlipTextIntermediate(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||||
if isinstance(config.hidden_act, str):
|
||||
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.intermediate_act_fn = config.hidden_act
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.intermediate_act_fn(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert -> BlipText
|
||||
class BlipTextOutput(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BlipTextLayer(nn.Module):
|
||||
def __init__(self, config, layer_num):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||||
self.seq_len_dim = 1
|
||||
self.attention = BlipTextAttention(config)
|
||||
self.layer_num = layer_num
|
||||
if self.config.is_decoder:
|
||||
self.crossattention = BlipTextAttention(config, is_cross_attention=self.config.is_decoder)
|
||||
self.intermediate = BlipTextIntermediate(config)
|
||||
self.output = BlipTextOutput(config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_value=None,
|
||||
output_attentions=False,
|
||||
):
|
||||
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||||
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||||
self_attention_outputs = self.attention(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
output_attentions=output_attentions,
|
||||
past_key_value=self_attn_past_key_value,
|
||||
)
|
||||
attention_output = self_attention_outputs[0]
|
||||
|
||||
outputs = self_attention_outputs[1:-1]
|
||||
present_key_value = self_attention_outputs[-1]
|
||||
|
||||
if encoder_hidden_states is not None:
|
||||
cross_attention_outputs = self.crossattention(
|
||||
attention_output,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
attention_output = cross_attention_outputs[0]
|
||||
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
||||
layer_output = apply_chunking_to_forward(
|
||||
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
||||
)
|
||||
outputs = (layer_output,) + outputs
|
||||
|
||||
outputs = outputs + (present_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
def feed_forward_chunk(self, attention_output):
|
||||
intermediate_output = self.intermediate(attention_output)
|
||||
layer_output = self.output(intermediate_output, attention_output)
|
||||
return layer_output
|
||||
|
||||
|
||||
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L386
|
||||
class BlipTextEncoder(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer = nn.ModuleList([BlipTextLayer(config, i) for i in range(config.num_hidden_layers)])
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=False,
|
||||
output_hidden_states=False,
|
||||
return_dict=True,
|
||||
):
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if output_attentions and self.config.is_decoder else None
|
||||
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
for i in range(self.config.num_hidden_layers):
|
||||
layer_module = self.layer[i]
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||||
past_key_value = past_key_values[i] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
if use_cache:
|
||||
logger.warn(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs, past_key_value, output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(layer_module),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
layer_head_mask,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
past_key_value,
|
||||
output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[-1],)
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [
|
||||
hidden_states,
|
||||
next_decoder_cache,
|
||||
all_hidden_states,
|
||||
all_self_attentions,
|
||||
all_cross_attentions,
|
||||
]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_decoder_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
cross_attentions=all_cross_attentions,
|
||||
)
|
||||
|
||||
|
||||
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BlipText
|
||||
class BlipTextPooler(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
self.activation = nn.Tanh()
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
# We "pool" the model by simply taking the hidden state corresponding
|
||||
# to the first token.
|
||||
first_token_tensor = hidden_states[:, 0]
|
||||
pooled_output = self.dense(first_token_tensor)
|
||||
pooled_output = self.activation(pooled_output)
|
||||
return pooled_output
|
||||
|
||||
|
||||
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BlipText
|
||||
class BlipTextPredictionHeadTransform(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||
if isinstance(config.hidden_act, str):
|
||||
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||||
else:
|
||||
self.transform_act_fn = config.hidden_act
|
||||
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
hidden_states = self.dense(hidden_states)
|
||||
hidden_states = self.transform_act_fn(hidden_states)
|
||||
hidden_states = self.LayerNorm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BlipText
|
||||
class BlipTextLMPredictionHead(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.transform = BlipTextPredictionHeadTransform(config)
|
||||
|
||||
# The output weights are the same as the input embeddings, but there is
|
||||
# an output-only bias for each token.
|
||||
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
||||
|
||||
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
||||
self.decoder.bias = self.bias
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.transform(hidden_states)
|
||||
hidden_states = self.decoder(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BlipText
|
||||
class BlipTextOnlyMLMHead(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.predictions = BlipTextLMPredictionHead(config)
|
||||
|
||||
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
||||
prediction_scores = self.predictions(sequence_output)
|
||||
return prediction_scores
|
||||
|
||||
|
||||
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L548
|
||||
class BlipTextPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = BlipTextConfig
|
||||
base_model_prefix = "bert"
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights"""
|
||||
if isinstance(module, (nn.Linear, nn.Embedding)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
if isinstance(module, nn.Linear) and module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
|
||||
|
||||
# Adapted from https://github.com/salesforce/BLIP/blob/3a29b7410476bf5f2ba0955827390eb6ea1f4f9d/models/med.py#L571
|
||||
class BlipTextModel(BlipTextPreTrainedModel):
|
||||
"""
|
||||
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
||||
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
||||
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
||||
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and `is_decoder` set to `True`; an
|
||||
`encoder_hidden_states` is then expected as an input to the forward pass.
|
||||
"""
|
||||
|
||||
def __init__(self, config, add_pooling_layer=True):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
self.embeddings = BlipTextEmbeddings(config)
|
||||
self.encoder = BlipTextEncoder(config)
|
||||
self.pooler = BlipTextPooler(config) if add_pooling_layer else None
|
||||
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings.word_embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embeddings.word_embeddings = value
|
||||
|
||||
# Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
|
||||
def _prune_heads(self, heads_to_prune):
|
||||
"""
|
||||
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||||
class PreTrainedModel
|
||||
"""
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
def get_extended_attention_mask(
|
||||
self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool
|
||||
) -> Tensor:
|
||||
"""
|
||||
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
||||
|
||||
Arguments:
|
||||
attention_mask (`torch.Tensor`):
|
||||
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
||||
input_shape (`Tuple[int]`):
|
||||
The shape of the input to the model.
|
||||
device: (`torch.device`):
|
||||
The device of the input to the model.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
|
||||
"""
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
if attention_mask.dim() == 3:
|
||||
extended_attention_mask = attention_mask[:, None, :, :]
|
||||
elif attention_mask.dim() == 2:
|
||||
# Provided a padding mask of dimensions [batch_size, seq_length]
|
||||
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
||||
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if is_decoder:
|
||||
batch_size, seq_length = input_shape
|
||||
|
||||
seq_ids = torch.arange(seq_length, device=device)
|
||||
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
||||
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
||||
# causal and attention masks must have same type with pytorch version < 1.3
|
||||
causal_mask = causal_mask.to(attention_mask.dtype)
|
||||
|
||||
if causal_mask.shape[1] < attention_mask.shape[1]:
|
||||
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
||||
causal_mask = torch.cat(
|
||||
[
|
||||
torch.ones(
|
||||
(batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype
|
||||
),
|
||||
causal_mask,
|
||||
],
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
||||
else:
|
||||
extended_attention_mask = attention_mask[:, None, None, :]
|
||||
else:
|
||||
raise ValueError(
|
||||
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
|
||||
input_shape, attention_mask.shape
|
||||
)
|
||||
)
|
||||
|
||||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||
# masked positions, this operation will create a tensor which is 0.0 for
|
||||
# positions we want to attend and -10000.0 for masked positions.
|
||||
# Since we are adding it to the raw scores before the softmax, this is
|
||||
# effectively the same as removing these entirely.
|
||||
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
||||
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
||||
return extended_attention_mask
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
encoder_embeds=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
is_decoder=False,
|
||||
):
|
||||
r"""
|
||||
encoder_hidden_states (:
|
||||
obj:*torch.FloatTensor* of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of
|
||||
hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is
|
||||
configured as a decoder.
|
||||
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
past_key_values (:
|
||||
obj:*tuple(tuple(torch.FloatTensor))* of length `config.n_layers` with each tuple having 4 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value
|
||||
hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the
|
||||
user can optionally input only the last `decoder_input_ids` (those that don't have their past key value
|
||||
states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape
|
||||
`(batch_size, sequence_length)`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if is_decoder:
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
else:
|
||||
use_cache = False
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
batch_size, seq_length = input_shape
|
||||
device = input_ids.device
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
device = inputs_embeds.device
|
||||
elif encoder_embeds is not None:
|
||||
input_shape = encoder_embeds.size()[:-1]
|
||||
batch_size, seq_length = input_shape
|
||||
device = encoder_embeds.device
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
|
||||
|
||||
# past_key_values_length
|
||||
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||||
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)))
|
||||
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
||||
attention_mask, input_shape, device, is_decoder
|
||||
)
|
||||
|
||||
# If a 2D or 3D attention mask is provided for the cross-attention
|
||||
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if encoder_hidden_states is not None:
|
||||
if type(encoder_hidden_states) == list:
|
||||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
|
||||
else:
|
||||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
||||
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
||||
|
||||
if type(encoder_attention_mask) == list:
|
||||
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
|
||||
elif encoder_attention_mask is None:
|
||||
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
||||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||||
else:
|
||||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||||
else:
|
||||
encoder_extended_attention_mask = None
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||
|
||||
if encoder_embeds is None:
|
||||
embedding_output = self.embeddings(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
else:
|
||||
embedding_output = encoder_embeds
|
||||
|
||||
encoder_outputs = self.encoder(
|
||||
embedding_output,
|
||||
attention_mask=extended_attention_mask,
|
||||
head_mask=head_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_extended_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
sequence_output = encoder_outputs[0]
|
||||
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||||
|
||||
if not return_dict:
|
||||
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
||||
|
||||
return BaseModelOutputWithPoolingAndCrossAttentions(
|
||||
last_hidden_state=sequence_output,
|
||||
pooler_output=pooled_output,
|
||||
past_key_values=encoder_outputs.past_key_values,
|
||||
hidden_states=encoder_outputs.hidden_states,
|
||||
attentions=encoder_outputs.attentions,
|
||||
cross_attentions=encoder_outputs.cross_attentions,
|
||||
)
|
||||
|
||||
|
||||
# Adapted from https://github.com/salesforce/BLIP/blob/main/models/med.py#L811
|
||||
class BlipTextLMHeadModel(BlipTextPreTrainedModel):
|
||||
|
||||
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.bert = BlipTextModel(config, add_pooling_layer=False)
|
||||
self.cls = BlipTextOnlyMLMHead(config)
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.cls.predictions.decoder
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.cls.predictions.decoder = new_embeddings
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
attention_mask=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
labels=None,
|
||||
past_key_values=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
return_logits=False,
|
||||
is_decoder=True,
|
||||
reduction="mean",
|
||||
):
|
||||
r"""
|
||||
encoder_hidden_states (:
|
||||
obj:*torch.FloatTensor* of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of
|
||||
hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is
|
||||
configured as a decoder.
|
||||
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||||
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
||||
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
||||
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
|
||||
past_key_values (:
|
||||
obj:*tuple(tuple(torch.FloatTensor))* of length `config.n_layers` with each tuple having 4 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value
|
||||
hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the
|
||||
user can optionally input only the last `decoder_input_ids` (those that don't have their past key value
|
||||
states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape
|
||||
`(batch_size, sequence_length)`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
Returns:
|
||||
Example:
|
||||
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
if labels is not None:
|
||||
use_cache = False
|
||||
|
||||
outputs = self.bert(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
is_decoder=is_decoder,
|
||||
)
|
||||
|
||||
sequence_output = outputs[0]
|
||||
prediction_scores = self.cls(sequence_output)
|
||||
|
||||
if return_logits:
|
||||
return prediction_scores[:, :-1, :].contiguous()
|
||||
|
||||
lm_loss = None
|
||||
if labels is not None:
|
||||
# we are doing next-token prediction; shift prediction scores and input ids by one
|
||||
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
||||
labels = labels[:, 1:].contiguous().to(shifted_prediction_scores.device)
|
||||
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
|
||||
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
if reduction == "none":
|
||||
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
|
||||
|
||||
if not return_dict:
|
||||
output = (prediction_scores,) + outputs[2:]
|
||||
return ((lm_loss,) + output) if lm_loss is not None else output
|
||||
|
||||
return CausalLMOutputWithCrossAttentions(
|
||||
loss=lm_loss,
|
||||
logits=prediction_scores,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
cross_attentions=outputs.cross_attentions,
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
||||
input_shape = input_ids.shape
|
||||
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
||||
if attention_mask is None:
|
||||
attention_mask = input_ids.new_ones(input_shape)
|
||||
|
||||
# cut decoder_input_ids if past is used
|
||||
if past is not None:
|
||||
input_ids = input_ids[:, -1:]
|
||||
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"past_key_values": past,
|
||||
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
|
||||
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
|
||||
"is_decoder": True,
|
||||
}
|
||||
|
||||
def _reorder_cache(self, past, beam_idx):
|
||||
reordered_past = ()
|
||||
for layer_past in past:
|
||||
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
||||
return reordered_past
|
149
src/transformers/models/blip/processing_blip.py
Normal file
149
src/transformers/models/blip/processing_blip.py
Normal file
@ -0,0 +1,149 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Processor class for Blip.
|
||||
"""
|
||||
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from ...processing_utils import ProcessorMixin
|
||||
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
||||
from ...utils import TensorType
|
||||
|
||||
|
||||
class BlipProcessor(ProcessorMixin):
|
||||
r"""
|
||||
Constructs a BLIP processor which wraps a BERT tokenizer and BLIP image processor into a single processor.
|
||||
|
||||
[`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`BertTokenizerFast`]. See the
|
||||
docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information.
|
||||
|
||||
Args:
|
||||
image_processor (`BlipImageProcessor`):
|
||||
An instance of [`BlipImageProcessor`]. The image processor is a required input.
|
||||
tokenizer (`BertTokenizerFast`):
|
||||
An instance of ['BertTokenizerFast`]. The tokenizer is a required input.
|
||||
"""
|
||||
attributes = ["image_processor", "tokenizer"]
|
||||
image_processor_class = "BlipImageProcessor"
|
||||
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
|
||||
|
||||
def __init__(self, image_processor, tokenizer):
|
||||
tokenizer.return_token_type_ids = False
|
||||
super().__init__(image_processor, tokenizer)
|
||||
self.current_processor = self.image_processor
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
images=None,
|
||||
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
||||
add_special_tokens: bool = True,
|
||||
padding: Union[bool, str, PaddingStrategy] = False,
|
||||
truncation: Union[bool, str, TruncationStrategy] = None,
|
||||
max_length: Optional[int] = None,
|
||||
stride: int = 0,
|
||||
pad_to_multiple_of: Optional[int] = None,
|
||||
return_attention_mask: Optional[bool] = None,
|
||||
return_overflowing_tokens: bool = False,
|
||||
return_special_tokens_mask: bool = False,
|
||||
return_offsets_mapping: bool = False,
|
||||
return_token_type_ids: bool = False,
|
||||
return_length: bool = False,
|
||||
verbose: bool = True,
|
||||
return_tensors: Optional[Union[str, TensorType]] = None,
|
||||
**kwargs
|
||||
) -> BatchEncoding:
|
||||
"""
|
||||
This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and
|
||||
[`BertTokenizerFast.__call__`] to prepare text for the model.
|
||||
|
||||
Please refer to the docstring of the above two methods for more information.
|
||||
"""
|
||||
if images is None and text is None:
|
||||
raise ValueError("You have to specify either images or text.")
|
||||
|
||||
# Get only text
|
||||
if images is None:
|
||||
|
||||
self.current_processor = self.tokenizer
|
||||
text_encoding = self.tokenizer(
|
||||
text=text,
|
||||
add_special_tokens=add_special_tokens,
|
||||
padding=padding,
|
||||
truncation=truncation,
|
||||
max_length=max_length,
|
||||
stride=stride,
|
||||
pad_to_multiple_of=pad_to_multiple_of,
|
||||
return_attention_mask=return_attention_mask,
|
||||
return_overflowing_tokens=return_overflowing_tokens,
|
||||
return_special_tokens_mask=return_special_tokens_mask,
|
||||
return_offsets_mapping=return_offsets_mapping,
|
||||
return_token_type_ids=return_token_type_ids,
|
||||
return_length=return_length,
|
||||
verbose=verbose,
|
||||
return_tensors=return_tensors,
|
||||
**kwargs,
|
||||
)
|
||||
return text_encoding
|
||||
|
||||
# add pixel_values
|
||||
encoding_image_processor = self.image_processor(images, return_tensors=return_tensors)
|
||||
|
||||
if text is not None:
|
||||
text_encoding = self.tokenizer(
|
||||
text=text,
|
||||
add_special_tokens=add_special_tokens,
|
||||
padding=padding,
|
||||
truncation=truncation,
|
||||
max_length=max_length,
|
||||
stride=stride,
|
||||
pad_to_multiple_of=pad_to_multiple_of,
|
||||
return_attention_mask=return_attention_mask,
|
||||
return_overflowing_tokens=return_overflowing_tokens,
|
||||
return_special_tokens_mask=return_special_tokens_mask,
|
||||
return_offsets_mapping=return_offsets_mapping,
|
||||
return_token_type_ids=return_token_type_ids,
|
||||
return_length=return_length,
|
||||
verbose=verbose,
|
||||
return_tensors=return_tensors,
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
text_encoding = None
|
||||
|
||||
if text_encoding is not None:
|
||||
encoding_image_processor.update(text_encoding)
|
||||
|
||||
return encoding_image_processor
|
||||
|
||||
def batch_decode(self, *args, **kwargs):
|
||||
"""
|
||||
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
||||
refer to the docstring of this method for more information.
|
||||
"""
|
||||
return self.tokenizer.batch_decode(*args, **kwargs)
|
||||
|
||||
def decode(self, *args, **kwargs):
|
||||
"""
|
||||
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
||||
the docstring of this method for more information.
|
||||
"""
|
||||
return self.tokenizer.decode(*args, **kwargs)
|
||||
|
||||
@property
|
||||
def model_input_names(self):
|
||||
tokenizer_input_names = self.tokenizer.model_input_names
|
||||
image_processor_input_names = self.image_processor.model_input_names
|
||||
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
@ -1122,6 +1122,58 @@ class BlenderbotSmallPreTrainedModel(metaclass=DummyObject):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
||||
|
||||
|
||||
class BlipForConditionalGeneration(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class BlipForImageTextRetrieval(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class BlipForQuestionAnswering(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class BlipModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class BlipPreTrainedModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class BlipTextModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
class BlipVisionModel(metaclass=DummyObject):
|
||||
_backends = ["torch"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["torch"])
|
||||
|
||||
|
||||
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = None
|
||||
|
||||
|
||||
|
@ -38,6 +38,13 @@ class BitImageProcessor(metaclass=DummyObject):
|
||||
requires_backends(self, ["vision"])
|
||||
|
||||
|
||||
class BlipImageProcessor(metaclass=DummyObject):
|
||||
_backends = ["vision"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["vision"])
|
||||
|
||||
|
||||
class ChineseCLIPFeatureExtractor(metaclass=DummyObject):
|
||||
_backends = ["vision"]
|
||||
|
||||
|
0
tests/models/blip/__init__.py
Normal file
0
tests/models/blip/__init__.py
Normal file
288
tests/models/blip/test_image_processing_blip.py
Normal file
288
tests/models/blip/test_image_processing_blip.py
Normal file
@ -0,0 +1,288 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 HuggingFace Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers.testing_utils import require_torch, require_vision
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import BlipImageProcessor
|
||||
|
||||
|
||||
class BlipImageProcessingTester(unittest.TestCase):
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
batch_size=7,
|
||||
num_channels=3,
|
||||
image_size=18,
|
||||
min_resolution=30,
|
||||
max_resolution=400,
|
||||
do_resize=True,
|
||||
size=None,
|
||||
do_normalize=True,
|
||||
do_pad=False,
|
||||
image_mean=[0.48145466, 0.4578275, 0.40821073],
|
||||
image_std=[0.26862954, 0.26130258, 0.27577711],
|
||||
do_convert_rgb=True,
|
||||
):
|
||||
size = size if size is not None else {"height": 20, "width": 20}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.num_channels = num_channels
|
||||
self.image_size = image_size
|
||||
self.min_resolution = min_resolution
|
||||
self.max_resolution = max_resolution
|
||||
self.do_resize = do_resize
|
||||
self.size = size
|
||||
self.do_normalize = do_normalize
|
||||
self.image_mean = image_mean
|
||||
self.image_std = image_std
|
||||
self.do_pad = do_pad
|
||||
self.do_convert_rgb = do_convert_rgb
|
||||
|
||||
def prepare_feat_extract_dict(self):
|
||||
return {
|
||||
"do_resize": self.do_resize,
|
||||
"size": self.size,
|
||||
"do_normalize": self.do_normalize,
|
||||
"image_mean": self.image_mean,
|
||||
"image_std": self.image_std,
|
||||
"do_convert_rgb": self.do_convert_rgb,
|
||||
"do_pad": self.do_pad,
|
||||
}
|
||||
|
||||
def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
||||
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
||||
or a list of PyTorch tensors if one specifies torchify=True.
|
||||
"""
|
||||
|
||||
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
|
||||
|
||||
if equal_resolution:
|
||||
image_inputs = []
|
||||
for i in range(self.batch_size):
|
||||
image_inputs.append(
|
||||
np.random.randint(
|
||||
255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
|
||||
)
|
||||
)
|
||||
else:
|
||||
image_inputs = []
|
||||
for i in range(self.batch_size):
|
||||
width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
|
||||
image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))
|
||||
|
||||
if not numpify and not torchify:
|
||||
# PIL expects the channel dimension as last dimension
|
||||
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
||||
|
||||
if torchify:
|
||||
image_inputs = [torch.from_numpy(x) for x in image_inputs]
|
||||
|
||||
return image_inputs
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class BlipImageProcessingTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
|
||||
|
||||
feature_extraction_class = BlipImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
self.feature_extract_tester = BlipImageProcessingTester(self)
|
||||
|
||||
@property
|
||||
def feat_extract_dict(self):
|
||||
return self.feature_extract_tester.prepare_feat_extract_dict()
|
||||
|
||||
def test_feat_extract_properties(self):
|
||||
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
||||
self.assertTrue(hasattr(feature_extractor, "do_resize"))
|
||||
self.assertTrue(hasattr(feature_extractor, "size"))
|
||||
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
|
||||
self.assertTrue(hasattr(feature_extractor, "image_mean"))
|
||||
self.assertTrue(hasattr(feature_extractor, "image_std"))
|
||||
self.assertTrue(hasattr(feature_extractor, "do_convert_rgb"))
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil(self):
|
||||
# Initialize feature_extractor
|
||||
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.feature_extract_tester.num_channels,
|
||||
self.feature_extract_tester.size["height"],
|
||||
self.feature_extract_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.feature_extract_tester.batch_size,
|
||||
self.feature_extract_tester.num_channels,
|
||||
self.feature_extract_tester.size["height"],
|
||||
self.feature_extract_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_numpy(self):
|
||||
# Initialize feature_extractor
|
||||
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
||||
# create random numpy tensors
|
||||
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False, numpify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, np.ndarray)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.feature_extract_tester.num_channels,
|
||||
self.feature_extract_tester.size["height"],
|
||||
self.feature_extract_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.feature_extract_tester.batch_size,
|
||||
self.feature_extract_tester.num_channels,
|
||||
self.feature_extract_tester.size["height"],
|
||||
self.feature_extract_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
def test_call_pytorch(self):
|
||||
# Initialize feature_extractor
|
||||
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
||||
# create random PyTorch tensors
|
||||
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False, torchify=True)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, torch.Tensor)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.feature_extract_tester.num_channels,
|
||||
self.feature_extract_tester.size["height"],
|
||||
self.feature_extract_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.feature_extract_tester.batch_size,
|
||||
self.feature_extract_tester.num_channels,
|
||||
self.feature_extract_tester.size["height"],
|
||||
self.feature_extract_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@require_torch
|
||||
@require_vision
|
||||
class BlipImageProcessingTestFourChannels(FeatureExtractionSavingTestMixin, unittest.TestCase):
|
||||
|
||||
feature_extraction_class = BlipImageProcessor if is_vision_available() else None
|
||||
|
||||
def setUp(self):
|
||||
self.feature_extract_tester = BlipImageProcessingTester(self, num_channels=4)
|
||||
self.expected_encoded_image_num_channels = 3
|
||||
|
||||
@property
|
||||
def feat_extract_dict(self):
|
||||
return self.feature_extract_tester.prepare_feat_extract_dict()
|
||||
|
||||
def test_feat_extract_properties(self):
|
||||
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
||||
self.assertTrue(hasattr(feature_extractor, "do_resize"))
|
||||
self.assertTrue(hasattr(feature_extractor, "size"))
|
||||
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
|
||||
self.assertTrue(hasattr(feature_extractor, "image_mean"))
|
||||
self.assertTrue(hasattr(feature_extractor, "image_std"))
|
||||
self.assertTrue(hasattr(feature_extractor, "do_convert_rgb"))
|
||||
|
||||
def test_batch_feature(self):
|
||||
pass
|
||||
|
||||
def test_call_pil_four_channels(self):
|
||||
# Initialize feature_extractor
|
||||
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
|
||||
# create random PIL images
|
||||
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False)
|
||||
for image in image_inputs:
|
||||
self.assertIsInstance(image, Image.Image)
|
||||
|
||||
# Test not batched input
|
||||
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
1,
|
||||
self.expected_encoded_image_num_channels,
|
||||
self.feature_extract_tester.size["height"],
|
||||
self.feature_extract_tester.size["width"],
|
||||
),
|
||||
)
|
||||
|
||||
# Test batched
|
||||
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
|
||||
self.assertEqual(
|
||||
encoded_images.shape,
|
||||
(
|
||||
self.feature_extract_tester.batch_size,
|
||||
self.expected_encoded_image_num_channels,
|
||||
self.feature_extract_tester.size["height"],
|
||||
self.feature_extract_tester.size["width"],
|
||||
),
|
||||
)
|
859
tests/models/blip/test_modeling_blip.py
Normal file
859
tests/models/blip/test_modeling_blip.py
Normal file
@ -0,0 +1,859 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Testing suite for the PyTorch Blip model. """
|
||||
|
||||
|
||||
import inspect
|
||||
import os
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
import requests
|
||||
from transformers import BlipConfig, BlipTextConfig, BlipVisionConfig
|
||||
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
||||
from transformers.utils import is_torch_available, is_vision_available
|
||||
|
||||
from ...test_configuration_common import ConfigTester
|
||||
from ...test_modeling_common import (
|
||||
ModelTesterMixin,
|
||||
_config_zero_init,
|
||||
floats_tensor,
|
||||
ids_tensor,
|
||||
random_attention_mask,
|
||||
)
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from transformers import (
|
||||
BlipForConditionalGeneration,
|
||||
BlipForImageTextRetrieval,
|
||||
BlipForQuestionAnswering,
|
||||
BlipModel,
|
||||
BlipTextModel,
|
||||
BlipVisionModel,
|
||||
)
|
||||
from transformers.models.blip.modeling_blip import BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
|
||||
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import BlipProcessor
|
||||
|
||||
|
||||
class BlipVisionModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
batch_size=12,
|
||||
image_size=30,
|
||||
patch_size=2,
|
||||
num_channels=3,
|
||||
is_training=True,
|
||||
hidden_size=32,
|
||||
projection_dim=32,
|
||||
num_hidden_layers=5,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
dropout=0.1,
|
||||
attention_dropout=0.1,
|
||||
initializer_range=1e-10,
|
||||
scope=None,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.image_size = image_size
|
||||
self.patch_size = patch_size
|
||||
self.num_channels = num_channels
|
||||
self.is_training = is_training
|
||||
self.hidden_size = hidden_size
|
||||
self.projection_dim = projection_dim
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.dropout = dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.initializer_range = initializer_range
|
||||
self.scope = scope
|
||||
|
||||
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
|
||||
num_patches = (image_size // patch_size) ** 2
|
||||
self.seq_length = num_patches + 1
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
||||
config = self.get_config()
|
||||
|
||||
return config, pixel_values
|
||||
|
||||
def get_config(self):
|
||||
return BlipVisionConfig(
|
||||
image_size=self.image_size,
|
||||
patch_size=self.patch_size,
|
||||
num_channels=self.num_channels,
|
||||
hidden_size=self.hidden_size,
|
||||
projection_dim=self.projection_dim,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
dropout=self.dropout,
|
||||
attention_dropout=self.attention_dropout,
|
||||
initializer_range=self.initializer_range,
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, pixel_values):
|
||||
model = BlipVisionModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
result = model(pixel_values)
|
||||
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
||||
image_size = (self.image_size, self.image_size)
|
||||
patch_size = (self.patch_size, self.patch_size)
|
||||
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
|
||||
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, pixel_values = config_and_inputs
|
||||
inputs_dict = {"pixel_values": pixel_values}
|
||||
return config, inputs_dict
|
||||
|
||||
|
||||
@require_torch
|
||||
class BlipVisionModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
"""
|
||||
Here we also overwrite some of the tests of test_modeling_common.py, as Blip does not use input_ids, inputs_embeds,
|
||||
attention_mask and seq_length.
|
||||
"""
|
||||
|
||||
all_model_classes = (BlipVisionModel,) if is_torch_available() else ()
|
||||
fx_compatible = False
|
||||
test_pruning = False
|
||||
test_resize_embeddings = False
|
||||
test_head_masking = False
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = BlipVisionModelTester(self)
|
||||
self.config_tester = ConfigTester(self, config_class=BlipVisionConfig, has_text_modality=False, hidden_size=37)
|
||||
|
||||
def test_config(self):
|
||||
self.config_tester.run_common_tests()
|
||||
|
||||
@unittest.skip(reason="Blip does not use inputs_embeds")
|
||||
def test_inputs_embeds(self):
|
||||
pass
|
||||
|
||||
def test_model_common_attributes(self):
|
||||
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config)
|
||||
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
||||
x = model.get_output_embeddings()
|
||||
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
||||
|
||||
def test_forward_signature(self):
|
||||
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config)
|
||||
signature = inspect.signature(model.forward)
|
||||
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
||||
arg_names = [*signature.parameters.keys()]
|
||||
|
||||
expected_arg_names = ["pixel_values"]
|
||||
self.assertListEqual(arg_names[:1], expected_arg_names)
|
||||
|
||||
def test_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_model(*config_and_inputs)
|
||||
|
||||
def test_training(self):
|
||||
pass
|
||||
|
||||
def test_training_gradient_checkpointing(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="BlipVisionModel has no base class and is not available in MODEL_MAPPING")
|
||||
def test_save_load_fast_init_from_base(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="BlipVisionModel has no base class and is not available in MODEL_MAPPING")
|
||||
def test_save_load_fast_init_to_base(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
model = BlipVisionModel.from_pretrained(model_name)
|
||||
self.assertIsNotNone(model)
|
||||
|
||||
|
||||
class BlipTextModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
batch_size=12,
|
||||
seq_length=7,
|
||||
is_training=True,
|
||||
use_input_mask=True,
|
||||
use_labels=True,
|
||||
vocab_size=99,
|
||||
hidden_size=32,
|
||||
projection_dim=32,
|
||||
num_hidden_layers=5,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
dropout=0.1,
|
||||
attention_dropout=0.1,
|
||||
max_position_embeddings=512,
|
||||
initializer_range=0.02,
|
||||
bos_token_id=0,
|
||||
scope=None,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.is_training = is_training
|
||||
self.use_input_mask = use_input_mask
|
||||
self.use_labels = use_labels
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.projection_dim = projection_dim
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.dropout = dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.initializer_range = initializer_range
|
||||
self.scope = scope
|
||||
self.bos_token_id = bos_token_id
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
||||
input_mask = None
|
||||
if self.use_input_mask:
|
||||
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
||||
|
||||
if input_mask is not None:
|
||||
batch_size, seq_length = input_mask.shape
|
||||
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
|
||||
for batch_idx, start_index in enumerate(rnd_start_indices):
|
||||
input_mask[batch_idx, :start_index] = 1
|
||||
input_mask[batch_idx, start_index:] = 0
|
||||
|
||||
config = self.get_config()
|
||||
|
||||
return config, input_ids, input_mask
|
||||
|
||||
def get_config(self):
|
||||
return BlipTextConfig(
|
||||
vocab_size=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
projection_dim=self.projection_dim,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
dropout=self.dropout,
|
||||
attention_dropout=self.attention_dropout,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
initializer_range=self.initializer_range,
|
||||
bos_token_id=self.bos_token_id,
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, input_ids, input_mask):
|
||||
model = BlipTextModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, input_ids, input_mask = config_and_inputs
|
||||
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
||||
return config, inputs_dict
|
||||
|
||||
|
||||
@require_torch
|
||||
class BlipTextModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
|
||||
all_model_classes = (BlipTextModel,) if is_torch_available() else ()
|
||||
fx_compatible = False
|
||||
test_pruning = False
|
||||
test_head_masking = False
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = BlipTextModelTester(self)
|
||||
self.config_tester = ConfigTester(self, config_class=BlipTextConfig, hidden_size=37)
|
||||
|
||||
def test_config(self):
|
||||
self.config_tester.run_common_tests()
|
||||
|
||||
def test_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_model(*config_and_inputs)
|
||||
|
||||
def test_training(self):
|
||||
pass
|
||||
|
||||
def test_training_gradient_checkpointing(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="Blip does not use inputs_embeds")
|
||||
def test_inputs_embeds(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING")
|
||||
def test_save_load_fast_init_from_base(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING")
|
||||
def test_save_load_fast_init_to_base(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
model = BlipTextModel.from_pretrained(model_name)
|
||||
self.assertIsNotNone(model)
|
||||
|
||||
|
||||
class BlipModelTester:
|
||||
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
|
||||
|
||||
if text_kwargs is None:
|
||||
text_kwargs = {}
|
||||
if vision_kwargs is None:
|
||||
vision_kwargs = {}
|
||||
|
||||
self.parent = parent
|
||||
self.text_model_tester = BlipTextModelTester(parent, **text_kwargs)
|
||||
self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs)
|
||||
self.is_training = is_training
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
|
||||
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
|
||||
|
||||
config = self.get_config()
|
||||
|
||||
return config, input_ids, attention_mask, pixel_values
|
||||
|
||||
def get_config(self):
|
||||
return BlipConfig.from_text_vision_configs(
|
||||
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
|
||||
model = BlipModel(config).to(torch_device).eval()
|
||||
with torch.no_grad():
|
||||
result = model(input_ids, pixel_values, attention_mask)
|
||||
self.parent.assertEqual(
|
||||
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
|
||||
)
|
||||
self.parent.assertEqual(
|
||||
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
|
||||
)
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, input_ids, attention_mask, pixel_values = config_and_inputs
|
||||
inputs_dict = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"pixel_values": pixel_values,
|
||||
"return_loss": True,
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
|
||||
@require_torch
|
||||
class BlipModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
all_model_classes = (BlipModel,) if is_torch_available() else ()
|
||||
fx_compatible = False
|
||||
test_head_masking = False
|
||||
test_pruning = False
|
||||
test_resize_embeddings = False
|
||||
test_attention_outputs = False
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = BlipModelTester(self)
|
||||
|
||||
def test_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_model(*config_and_inputs)
|
||||
|
||||
@unittest.skip(reason="Hidden_states is tested in individual model tests")
|
||||
def test_hidden_states_output(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
|
||||
def test_inputs_embeds(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="Retain_grad is tested in individual model tests")
|
||||
def test_retain_grad_hidden_states_attentions(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="BlipModel does not have input/output embeddings")
|
||||
def test_model_common_attributes(self):
|
||||
pass
|
||||
|
||||
# override as the `logit_scale` parameter initilization is different for Blip
|
||||
def test_initialization(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
configs_no_init = _config_zero_init(config)
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config=configs_no_init)
|
||||
for name, param in model.named_parameters():
|
||||
if param.requires_grad:
|
||||
# check if `logit_scale` is initilized as per the original implementation
|
||||
if name == "logit_scale":
|
||||
self.assertAlmostEqual(
|
||||
param.data.item(),
|
||||
np.log(1 / 0.07),
|
||||
delta=1e-3,
|
||||
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
||||
)
|
||||
else:
|
||||
self.assertIn(
|
||||
((param.data.mean() * 1e9).round() / 1e9).item(),
|
||||
[0.0, 1.0],
|
||||
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
||||
)
|
||||
|
||||
def _create_and_check_torchscript(self, config, inputs_dict):
|
||||
if not self.test_torchscript:
|
||||
return
|
||||
|
||||
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
||||
configs_no_init.torchscript = True
|
||||
configs_no_init.return_dict = False
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config=configs_no_init)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
try:
|
||||
input_ids = inputs_dict["input_ids"]
|
||||
pixel_values = inputs_dict["pixel_values"] # Blip needs pixel_values
|
||||
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
|
||||
except RuntimeError:
|
||||
self.fail("Couldn't trace module.")
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
||||
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
|
||||
|
||||
try:
|
||||
torch.jit.save(traced_model, pt_file_name)
|
||||
except Exception:
|
||||
self.fail("Couldn't save module.")
|
||||
|
||||
try:
|
||||
loaded_model = torch.jit.load(pt_file_name)
|
||||
except Exception:
|
||||
self.fail("Couldn't load module.")
|
||||
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
loaded_model.to(torch_device)
|
||||
loaded_model.eval()
|
||||
|
||||
model_state_dict = model.state_dict()
|
||||
loaded_model_state_dict = loaded_model.state_dict()
|
||||
|
||||
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
|
||||
|
||||
models_equal = True
|
||||
for layer_name, p1 in model_state_dict.items():
|
||||
p2 = loaded_model_state_dict[layer_name]
|
||||
if p1.data.ne(p2.data).sum() > 0:
|
||||
models_equal = False
|
||||
|
||||
self.assertTrue(models_equal)
|
||||
|
||||
def test_load_vision_text_config(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
# Save BlipConfig and check if we can load BlipVisionConfig from it
|
||||
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
||||
config.save_pretrained(tmp_dir_name)
|
||||
vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name)
|
||||
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
|
||||
|
||||
# Save BlipConfig and check if we can load BlipTextConfig from it
|
||||
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
||||
config.save_pretrained(tmp_dir_name)
|
||||
text_config = BlipTextConfig.from_pretrained(tmp_dir_name)
|
||||
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
model = BlipModel.from_pretrained(model_name)
|
||||
self.assertIsNotNone(model)
|
||||
|
||||
|
||||
class BlipTextImageModelsModelTester:
|
||||
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
|
||||
|
||||
if text_kwargs is None:
|
||||
text_kwargs = {}
|
||||
if vision_kwargs is None:
|
||||
vision_kwargs = {}
|
||||
|
||||
self.parent = parent
|
||||
self.text_model_tester = BlipTextModelTester(parent, **text_kwargs)
|
||||
self.vision_model_tester = BlipVisionModelTester(parent, **vision_kwargs)
|
||||
self.is_training = is_training
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
|
||||
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
|
||||
|
||||
config = self.get_config()
|
||||
|
||||
return config, input_ids, attention_mask, pixel_values
|
||||
|
||||
def get_config(self):
|
||||
return BlipConfig.from_text_vision_configs(
|
||||
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
|
||||
model = BlipModel(config).to(torch_device).eval()
|
||||
with torch.no_grad():
|
||||
result = model(input_ids, pixel_values, attention_mask)
|
||||
self.parent.assertEqual(
|
||||
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
|
||||
)
|
||||
self.parent.assertEqual(
|
||||
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
|
||||
)
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, input_ids, attention_mask, pixel_values = config_and_inputs
|
||||
inputs_dict = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"pixel_values": pixel_values,
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
|
||||
@require_torch
|
||||
class BlipTextImageModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
all_model_classes = (
|
||||
(
|
||||
BlipForConditionalGeneration,
|
||||
BlipForQuestionAnswering,
|
||||
BlipForImageTextRetrieval,
|
||||
)
|
||||
if is_torch_available()
|
||||
else ()
|
||||
)
|
||||
fx_compatible = False
|
||||
test_head_masking = False
|
||||
test_pruning = False
|
||||
test_resize_embeddings = False
|
||||
test_attention_outputs = False
|
||||
test_torchscript = False
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = BlipTextImageModelsModelTester(self)
|
||||
|
||||
def test_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_model(*config_and_inputs)
|
||||
|
||||
@unittest.skip(reason="Hidden_states is tested in individual model tests")
|
||||
def test_hidden_states_output(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
|
||||
def test_inputs_embeds(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="Retain_grad is tested in individual model tests")
|
||||
def test_retain_grad_hidden_states_attentions(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="BlipModel does not have input/output embeddings")
|
||||
def test_model_common_attributes(self):
|
||||
pass
|
||||
|
||||
def test_forward_signature(self):
|
||||
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config)
|
||||
signature = inspect.signature(model.forward)
|
||||
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
||||
arg_names = [*signature.parameters.keys()]
|
||||
|
||||
if model.config.is_encoder_decoder:
|
||||
expected_arg_names = [
|
||||
"input_ids",
|
||||
"attention_mask",
|
||||
"decoder_input_ids",
|
||||
"decoder_attention_mask",
|
||||
]
|
||||
expected_arg_names.extend(
|
||||
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
|
||||
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
|
||||
else ["encoder_outputs"]
|
||||
)
|
||||
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
|
||||
else:
|
||||
expected_arg_names = ["input_ids"] if model_class != BlipForConditionalGeneration else ["pixel_values"]
|
||||
self.assertListEqual(arg_names[:1], expected_arg_names)
|
||||
|
||||
def test_training(self):
|
||||
if not self.model_tester.is_training:
|
||||
return
|
||||
|
||||
for model_class in self.all_model_classes[:-1]:
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
config.return_dict = True
|
||||
|
||||
model = model_class(config)
|
||||
model.to(torch_device)
|
||||
model.train()
|
||||
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
||||
loss = model(**inputs).loss
|
||||
loss.backward()
|
||||
|
||||
def test_training_gradient_checkpointing(self):
|
||||
if not self.model_tester.is_training:
|
||||
return
|
||||
|
||||
for model_class in self.all_model_classes[:-1]:
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
config.use_cache = False
|
||||
config.return_dict = True
|
||||
|
||||
model = model_class(config)
|
||||
model.to(torch_device)
|
||||
model.gradient_checkpointing_enable()
|
||||
model.train()
|
||||
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
||||
loss = model(**inputs).loss
|
||||
loss.backward()
|
||||
|
||||
# override as the `logit_scale` parameter initilization is different for Blip
|
||||
def test_initialization(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
configs_no_init = _config_zero_init(config)
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config=configs_no_init)
|
||||
for name, param in model.named_parameters():
|
||||
if param.requires_grad:
|
||||
# check if `logit_scale` is initilized as per the original implementation
|
||||
if name == "logit_scale":
|
||||
self.assertAlmostEqual(
|
||||
param.data.item(),
|
||||
np.log(1 / 0.07),
|
||||
delta=1e-3,
|
||||
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
||||
)
|
||||
else:
|
||||
self.assertIn(
|
||||
((param.data.mean() * 1e9).round() / 1e9).item(),
|
||||
[0.0, 1.0],
|
||||
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
||||
)
|
||||
|
||||
def _create_and_check_torchscript(self, config, inputs_dict):
|
||||
if not self.test_torchscript:
|
||||
return
|
||||
|
||||
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
||||
configs_no_init.torchscript = True
|
||||
configs_no_init.return_dict = False
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config=configs_no_init)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
try:
|
||||
input_ids = inputs_dict["input_ids"]
|
||||
pixel_values = inputs_dict["pixel_values"] # Blip needs pixel_values
|
||||
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
|
||||
except RuntimeError:
|
||||
self.fail("Couldn't trace module.")
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
||||
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
|
||||
|
||||
try:
|
||||
torch.jit.save(traced_model, pt_file_name)
|
||||
except Exception:
|
||||
self.fail("Couldn't save module.")
|
||||
|
||||
try:
|
||||
loaded_model = torch.jit.load(pt_file_name)
|
||||
except Exception:
|
||||
self.fail("Couldn't load module.")
|
||||
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
loaded_model.to(torch_device)
|
||||
loaded_model.eval()
|
||||
|
||||
model_state_dict = model.state_dict()
|
||||
loaded_model_state_dict = loaded_model.state_dict()
|
||||
|
||||
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
|
||||
|
||||
models_equal = True
|
||||
for layer_name, p1 in model_state_dict.items():
|
||||
p2 = loaded_model_state_dict[layer_name]
|
||||
if p1.data.ne(p2.data).sum() > 0:
|
||||
models_equal = False
|
||||
|
||||
self.assertTrue(models_equal)
|
||||
|
||||
def test_load_vision_text_config(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
|
||||
# Save BlipConfig and check if we can load BlipVisionConfig from it
|
||||
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
||||
config.save_pretrained(tmp_dir_name)
|
||||
vision_config = BlipVisionConfig.from_pretrained(tmp_dir_name)
|
||||
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
|
||||
|
||||
# Save BlipConfig and check if we can load BlipTextConfig from it
|
||||
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
||||
config.save_pretrained(tmp_dir_name)
|
||||
text_config = BlipTextConfig.from_pretrained(tmp_dir_name)
|
||||
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
model = BlipModel.from_pretrained(model_name)
|
||||
self.assertIsNotNone(model)
|
||||
|
||||
|
||||
# We will verify our results on an image of cute cats
|
||||
def prepare_img():
|
||||
url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg"
|
||||
im = Image.open(requests.get(url, stream=True).raw)
|
||||
return im
|
||||
|
||||
|
||||
@require_vision
|
||||
@require_torch
|
||||
@slow
|
||||
class BlipModelIntegrationTest(unittest.TestCase):
|
||||
def test_inference_image_captioning(self):
|
||||
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(torch_device)
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
||||
image = prepare_img()
|
||||
|
||||
# image only
|
||||
inputs = processor(images=image, return_tensors="pt").to(torch_device)
|
||||
|
||||
predictions = model.generate(**inputs)
|
||||
|
||||
# Test output
|
||||
self.assertEqual(predictions[0].tolist(), [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102])
|
||||
|
||||
# image and context
|
||||
context = ["a picture of"]
|
||||
inputs = processor(images=image, text=context, return_tensors="pt").to(torch_device)
|
||||
|
||||
predictions = model.generate(**inputs)
|
||||
|
||||
# Test output
|
||||
self.assertEqual(
|
||||
predictions[0].tolist(),
|
||||
[30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102],
|
||||
)
|
||||
|
||||
def test_inference_image_captioning_fp16(self):
|
||||
model = BlipForConditionalGeneration.from_pretrained(
|
||||
"Salesforce/blip-image-captioning-base", torch_dtype=torch.float16
|
||||
).to(torch_device)
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
||||
image = prepare_img()
|
||||
|
||||
# image only
|
||||
inputs = processor(images=image, return_tensors="pt").to(torch_device, torch.float16)
|
||||
|
||||
predictions = model.generate(**inputs)
|
||||
|
||||
# Test output
|
||||
self.assertEqual(predictions[0].tolist(), [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102])
|
||||
|
||||
# image and context
|
||||
context = ["a picture of"]
|
||||
inputs = processor(images=image, text=context, return_tensors="pt").to(torch_device, torch.float16)
|
||||
|
||||
predictions = model.generate(**inputs)
|
||||
|
||||
# Test output
|
||||
self.assertEqual(
|
||||
predictions[0].tolist(),
|
||||
[30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102],
|
||||
)
|
||||
|
||||
def test_inference_vqa(self):
|
||||
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(torch_device)
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
||||
|
||||
image = prepare_img()
|
||||
text = "how many dogs are in the picture?"
|
||||
|
||||
inputs = processor(image, text=text, return_tensors="pt").to(torch_device)
|
||||
out = model.generate(**inputs)
|
||||
|
||||
# Test output
|
||||
self.assertEqual(out[0].tolist(), [30522, 1015, 102])
|
||||
|
||||
def test_inference_itm(self):
|
||||
model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco").to(torch_device)
|
||||
processor = BlipProcessor.from_pretrained("Salesforce/blip-itm-base-coco")
|
||||
|
||||
image = prepare_img()
|
||||
text = "A woman and her dog sitting in a beach"
|
||||
|
||||
inputs = processor(image, text, return_tensors="pt").to(torch_device)
|
||||
|
||||
out_itm = model(**inputs)
|
||||
out = model(**inputs, use_itm_head=False)
|
||||
|
||||
expected_scores = torch.Tensor([[0.9779, 0.0221]])
|
||||
|
||||
self.assertTrue(torch.allclose(torch.nn.Softmax()(out_itm[0].cpu()), expected_scores, atol=1e-3, rtol=1e-3))
|
||||
self.assertTrue(torch.allclose(out[0].cpu(), torch.Tensor([[0.5053]]), atol=1e-3, rtol=1e-3))
|
167
tests/models/blip/test_modeling_blip_text.py
Normal file
167
tests/models/blip/test_modeling_blip_text.py
Normal file
@ -0,0 +1,167 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Testing suite for the PyTorch Blip model. """
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
from transformers import BlipTextConfig
|
||||
from transformers.testing_utils import require_torch, slow, torch_device
|
||||
from transformers.utils import is_torch_available
|
||||
|
||||
from ...test_configuration_common import ConfigTester
|
||||
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
from transformers import BlipTextModel
|
||||
from transformers.models.blip.modeling_blip import BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
|
||||
|
||||
|
||||
class BlipTextModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
batch_size=12,
|
||||
seq_length=7,
|
||||
is_training=True,
|
||||
use_input_mask=True,
|
||||
use_labels=True,
|
||||
vocab_size=99,
|
||||
hidden_size=32,
|
||||
projection_dim=32,
|
||||
num_hidden_layers=5,
|
||||
num_attention_heads=4,
|
||||
intermediate_size=37,
|
||||
dropout=0.1,
|
||||
attention_dropout=0.1,
|
||||
max_position_embeddings=512,
|
||||
initializer_range=0.02,
|
||||
bos_token_id=0,
|
||||
scope=None,
|
||||
):
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.seq_length = seq_length
|
||||
self.is_training = is_training
|
||||
self.use_input_mask = use_input_mask
|
||||
self.use_labels = use_labels
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.projection_dim = projection_dim
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.intermediate_size = intermediate_size
|
||||
self.dropout = dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.initializer_range = initializer_range
|
||||
self.scope = scope
|
||||
self.bos_token_id = bos_token_id
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
||||
input_mask = None
|
||||
if self.use_input_mask:
|
||||
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
||||
|
||||
if input_mask is not None:
|
||||
batch_size, seq_length = input_mask.shape
|
||||
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
|
||||
for batch_idx, start_index in enumerate(rnd_start_indices):
|
||||
input_mask[batch_idx, :start_index] = 1
|
||||
input_mask[batch_idx, start_index:] = 0
|
||||
|
||||
config = self.get_config()
|
||||
|
||||
return config, input_ids, input_mask
|
||||
|
||||
def get_config(self):
|
||||
return BlipTextConfig(
|
||||
vocab_size=self.vocab_size,
|
||||
hidden_size=self.hidden_size,
|
||||
projection_dim=self.projection_dim,
|
||||
num_hidden_layers=self.num_hidden_layers,
|
||||
num_attention_heads=self.num_attention_heads,
|
||||
intermediate_size=self.intermediate_size,
|
||||
dropout=self.dropout,
|
||||
attention_dropout=self.attention_dropout,
|
||||
max_position_embeddings=self.max_position_embeddings,
|
||||
initializer_range=self.initializer_range,
|
||||
bos_token_id=self.bos_token_id,
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, input_ids, input_mask):
|
||||
model = BlipTextModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, input_ids, input_mask = config_and_inputs
|
||||
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
||||
return config, inputs_dict
|
||||
|
||||
|
||||
@require_torch
|
||||
class BlipTextModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
|
||||
all_model_classes = (BlipTextModel,) if is_torch_available() else ()
|
||||
fx_compatible = False
|
||||
test_pruning = False
|
||||
test_head_masking = False
|
||||
|
||||
def setUp(self):
|
||||
self.model_tester = BlipTextModelTester(self)
|
||||
self.config_tester = ConfigTester(self, config_class=BlipTextConfig, hidden_size=37)
|
||||
|
||||
def test_config(self):
|
||||
self.config_tester.run_common_tests()
|
||||
|
||||
def test_model(self):
|
||||
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
||||
self.model_tester.create_and_check_model(*config_and_inputs)
|
||||
|
||||
def test_training(self):
|
||||
pass
|
||||
|
||||
def test_training_gradient_checkpointing(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="Blip does not use inputs_embeds")
|
||||
def test_inputs_embeds(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING")
|
||||
def test_save_load_fast_init_from_base(self):
|
||||
pass
|
||||
|
||||
@unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING")
|
||||
def test_save_load_fast_init_to_base(self):
|
||||
pass
|
||||
|
||||
@slow
|
||||
def test_model_from_pretrained(self):
|
||||
for model_name in BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
||||
model = BlipTextModel.from_pretrained(model_name)
|
||||
self.assertIsNotNone(model)
|
151
tests/models/blip/test_processor_blip.py
Normal file
151
tests/models/blip/test_processor_blip.py
Normal file
@ -0,0 +1,151 @@
|
||||
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import shutil
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from transformers.testing_utils import require_vision
|
||||
from transformers.utils import is_vision_available
|
||||
|
||||
|
||||
if is_vision_available():
|
||||
from PIL import Image
|
||||
|
||||
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
|
||||
|
||||
|
||||
@require_vision
|
||||
class BlipProcessorTest(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.tmpdirname = tempfile.mkdtemp()
|
||||
|
||||
image_processor = BlipImageProcessor()
|
||||
tokenizer = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel")
|
||||
|
||||
processor = BlipProcessor(image_processor, tokenizer)
|
||||
|
||||
processor.save_pretrained(self.tmpdirname)
|
||||
|
||||
def get_tokenizer(self, **kwargs):
|
||||
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
|
||||
|
||||
def get_image_processor(self, **kwargs):
|
||||
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
|
||||
|
||||
def tearDown(self):
|
||||
shutil.rmtree(self.tmpdirname)
|
||||
|
||||
def prepare_image_inputs(self):
|
||||
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
||||
or a list of PyTorch tensors if one specifies torchify=True.
|
||||
"""
|
||||
|
||||
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
|
||||
|
||||
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
||||
|
||||
return image_inputs
|
||||
|
||||
def test_save_load_pretrained_additional_features(self):
|
||||
processor = BlipProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
|
||||
processor.save_pretrained(self.tmpdirname)
|
||||
|
||||
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
||||
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
|
||||
|
||||
processor = BlipProcessor.from_pretrained(
|
||||
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
||||
)
|
||||
|
||||
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
||||
self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)
|
||||
|
||||
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
|
||||
self.assertIsInstance(processor.image_processor, BlipImageProcessor)
|
||||
|
||||
def test_image_processor(self):
|
||||
image_processor = self.get_image_processor()
|
||||
tokenizer = self.get_tokenizer()
|
||||
|
||||
processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
||||
|
||||
image_input = self.prepare_image_inputs()
|
||||
|
||||
input_feat_extract = image_processor(image_input, return_tensors="np")
|
||||
input_processor = processor(images=image_input, return_tensors="np")
|
||||
|
||||
for key in input_feat_extract.keys():
|
||||
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
||||
|
||||
def test_tokenizer(self):
|
||||
image_processor = self.get_image_processor()
|
||||
tokenizer = self.get_tokenizer()
|
||||
|
||||
processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
||||
|
||||
input_str = "lower newer"
|
||||
|
||||
encoded_processor = processor(text=input_str)
|
||||
|
||||
encoded_tok = tokenizer(input_str, return_token_type_ids=False)
|
||||
|
||||
for key in encoded_tok.keys():
|
||||
self.assertListEqual(encoded_tok[key], encoded_processor[key])
|
||||
|
||||
def test_processor(self):
|
||||
image_processor = self.get_image_processor()
|
||||
tokenizer = self.get_tokenizer()
|
||||
|
||||
processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
||||
|
||||
input_str = "lower newer"
|
||||
image_input = self.prepare_image_inputs()
|
||||
|
||||
inputs = processor(text=input_str, images=image_input)
|
||||
|
||||
self.assertListEqual(list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask"])
|
||||
|
||||
# test if it raises when no input is passed
|
||||
with pytest.raises(ValueError):
|
||||
processor()
|
||||
|
||||
def test_tokenizer_decode(self):
|
||||
image_processor = self.get_image_processor()
|
||||
tokenizer = self.get_tokenizer()
|
||||
|
||||
processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
||||
|
||||
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
||||
|
||||
decoded_processor = processor.batch_decode(predicted_ids)
|
||||
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
||||
|
||||
self.assertListEqual(decoded_tok, decoded_processor)
|
||||
|
||||
def test_model_input_names(self):
|
||||
image_processor = self.get_image_processor()
|
||||
tokenizer = self.get_tokenizer()
|
||||
|
||||
processor = BlipProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
||||
|
||||
input_str = "lower newer"
|
||||
image_input = self.prepare_image_inputs()
|
||||
|
||||
inputs = processor(text=input_str, images=image_input)
|
||||
|
||||
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
|
||||
self.assertListEqual(list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask"])
|
@ -121,6 +121,7 @@ IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
|
||||
"FlaxBertForCausalLM", # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
|
||||
"OPTDecoderWrapper",
|
||||
"TFSegformerDecodeHead", # Not a regular model.
|
||||
"BlipTextLMHeadModel", # No need to test it as it is tested by BlipTextVision models
|
||||
]
|
||||
|
||||
# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
|
||||
@ -147,6 +148,12 @@ TEST_FILES_WITH_NO_COMMON_TESTS = [
|
||||
# should **not** be the rule.
|
||||
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
|
||||
# models to ignore for model xxx mapping
|
||||
"BlipForConditionalGeneration",
|
||||
"BlipForImageTextRetrieval",
|
||||
"BlipForQuestionAnswering",
|
||||
"BlipVisionModel",
|
||||
"BlipTextLMHeadModel",
|
||||
"BlipTextModel",
|
||||
"Swin2SRForImageSuperResolution",
|
||||
"CLIPSegForImageSegmentation",
|
||||
"CLIPSegVisionModel",
|
||||
|
@ -35,6 +35,7 @@ src/transformers/models/blenderbot/configuration_blenderbot.py
|
||||
src/transformers/models/blenderbot/modeling_blenderbot.py
|
||||
src/transformers/models/blenderbot_small/configuration_blenderbot_small.py
|
||||
src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
|
||||
src/transformers/models/blip/modeling_blip.py
|
||||
src/transformers/models/bloom/configuration_bloom.py
|
||||
src/transformers/models/camembert/configuration_camembert.py
|
||||
src/transformers/models/canine/configuration_canine.py
|
||||
|
Loading…
Reference in New Issue
Block a user