transformers/docs/source/en/model_doc/llama.md
Alex McKinney 75336c1794
Add Llama Flax Implementation (#24587)
* Copies `modeling_flax_gpt_neo.py` to start

* MLP Block. WIP Attention and Block

* Adds Flax implementation of `LlamaMLP`
Validated with in-file test.
Some slight numeric differences, but assuming it isn't an issue

* Adds `FlaxLlamaRMSNorm` layer
`flax.linen` includes `RMSNorm` layer but not necessarily in all
versions. Hence, we add in-file.

* Adds FlaxLlamaAttention
Copied from GPT-J as it has efficient caching implementation as well as
rotary embeddings.
Notice numerically different, but not by a huge amount. Needs
investigating

* Adds `FlaxLlamaDecoderLayer`
numerically inaccurate, debugging..

* debugging rotary mismatch
gptj uses interleaved whilst llama uses contiguous
i think they match now but still final result is wrong.
maybe drop back to just debugging attention layer?

* fixes bug with decoder layer
still somewhat numerically inaccurate, but close enough for now

* adds markers for what to implement next
the structure here diverges a lot from the PT version.
not a big fan of it, but just get something working for now

* implements `FlaxLlamaBlockCollection`]
tolerance must be higher than expected, kinda disconcerting

* Adds `FlaxLlamaModule`
equivalent PyTorch model is `LlamaModel`
yay! a language model🤗

* adds `FlaxLlamaForCausalLMModule`
equivalent to `LlamaForCausalLM`
still missing returning dict or tuple, will add later

* start porting pretrained wrappers
realised it probably needs return dict as a prereq

* cleanup, quality, style

* readds `return_dict` and model output named tuples

* (tentatively) pretrained wrappers work 🔥

* fixes numerical mismatch in `FlaxLlamaRMSNorm`
seems `jax.lax.rsqrt` does not match `torch.sqrt`.
manually computing `1 / jax.numpy.sqrt` results in matching values.

* [WIP] debugging numerics

* numerical match
I think issue was accidental change of backend. forcing CPU fixes test.
We expect some mismatch on GPU.

* adds in model and integration tests for Flax Llama
summary of failing:
- mul invalid combination of dimensions
- one numerical mismatch
- bf16 conversion (maybe my local backend issue)
- params are not FrozenDict

* adds missing TYPE_CHECKING import and `make fixup`

* adds back missing docstrings
needs review on quality of docstrings, not sure what is required.
Furthermore, need to check if `CHECKPOINT_FOR_DOC` is valid. See TODO

* commenting out equivalence test as can just use common

* debugging

* Fixes bug where mask and pos_ids were swapped in pretrained models
This results in all tests passing now 🔥

* cleanup of modeling file

* cleanup of test file

* Resolving simpler review comments

* addresses more minor review comments

* fixing introduced pytest errors from review

* wip additional slow tests

* wip tests
need to grab a GPU machine to get real logits for comparison
otherwise, slow tests should be okay

* `make quality`, `make style`

* adds slow integration tests
- checking logits
- checking hidden states
- checking generation outputs

* `make fix-copies`

* fix mangled function following `make fix-copies`

* adds missing type checking imports

* fixes missing parameter checkpoint warning

* more finegrained 'Copied from' tags
avoids issue of overwriting `LLAMA_INPUTS_DOCSTRING`

* swaps import guards
??? how did these get swapped initially?

* removing `inv_freq` again as pytorch version has now removed

* attempting to get CI to pass

* adds doc entries for llama flax models

* fixes typo in __init__.py imports

* adds back special equivalence tests
these come from the gpt neo flax tests. there is special behaviour for these models that needs to override the common version

* overrides tests with dummy to see if CI passes
need to fill in these tests later

* adds my contribution to docs

* `make style; make quality`

* replaces random masking with fixed to work with flax version

* `make quality; make style`

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* updates `x`->`tensor` in `rotate_half`

* addresses smaller review comments

* Update docs/source/en/model_doc/llama.md

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* adds integration test class

* adds `dtype` to rotary embedding to cast outputs

* adds type to flax llama rotary layer

* `make style`

* `make fix-copies`

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* applies suggestions from review

* Update modeling_flax_llama.py

* `make fix-copies`

* Update tests/models/llama/test_modeling_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* Update src/transformers/models/llama/modeling_flax_llama.py

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* fixes shape mismatch in FlaxLlamaMLP

* applies some suggestions from reviews

* casts attn output logits to f32 regardless of dtype

* adds attn bias using `LlamaConfig.attention_bias`

* adds Copied From comments to Flax Llama test

* mistral and persimmon test change -copy from llama

* updates docs index

* removes Copied from in tests

it was preventing `make fix-copies` from succeeding

* quality and style

* ignores FlaxLlama input docstring

* adds revision to `_CHECKPOINT_FOR_DOC`

* repo consistency and quality

* removes unused import

* removes copied from from Phi test

now diverges from llama tests following FlaxLlama changes

* adds `_REAL_CHECKPOINT_FOR_DOC`

* removes refs from pr tests

* reformat to make ruff happy

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-12-07 07:05:00 +01:00

7.2 KiB
Raw Blame History

LLaMA

Overview

The LLaMA model was proposed in LLaMA: Open and Efficient Foundation Language Models by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample. It is a collection of foundation language models ranging from 7B to 65B parameters.

The abstract from the paper is the following:

*We introduce LLaMA, a collection of foundation language models ranging from 7B to 65B parameters. We train our models on trillions of tokens, and show that it is possible to train state-of-the-art models using publicly available datasets exclusively, without resorting to proprietary and inaccessible datasets. In particular, LLaMA-13B outperforms GPT-3 (175B) on most benchmarks, and LLaMA-65B is competitive with the best models, Chinchilla-70B and PaLM-540B. We release all our models to the research community. *

This model was contributed by zphang with contributions from BlackSamorez. The code of the implementation in Hugging Face is based on GPT-NeoX here. The original code of the authors can be found here.

Usage tips

  • Weights for the LLaMA models can be obtained from by filling out this form
  • After downloading the weights, they will need to be converted to the Hugging Face Transformers format using the conversion script. The script can be called with the following (example) command:
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
    --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
  • After conversion, the model and tokenizer can be loaded via:
from transformers import LlamaForCausalLM, LlamaTokenizer

tokenizer = LlamaTokenizer.from_pretrained("/output/path")
model = LlamaForCausalLM.from_pretrained("/output/path")

Note that executing the script requires enough CPU RAM to host the whole model in float16 precision (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). For the 65B model, it's thus 130GB of RAM needed.

  • The LLaMA tokenizer is a BPE model based on sentencepiece. One quirk of sentencepiece is that when decoding a sequence, if the first token is the start of the word (e.g. "Banana"), the tokenizer does not prepend the prefix space to the string.

This model was contributed by zphang with contributions from BlackSamorez. The code of the implementation in Hugging Face is based on GPT-NeoX here. The original code of the authors can be found here. The Flax version of the implementation was contributed by afmck with the code in the implementation based on Hugging Face's Flax GPT-Neo.

Based on the original LLaMA model, Meta AI has released some follow-up works:

  • Llama2: Llama2 is an improved version of Llama with some architectural tweaks (Grouped Query Attention), and is pre-trained on 2Trillion tokens. Refer to the documentation of Llama2 which can be found here.

Resources

A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with LLaMA. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

  • A notebook on how to use prompt tuning to adapt the LLaMA model for text classification task. 🌎

⚗️ Optimization

  • A notebook on how to fine-tune LLaMA model using xturing library on GPU which has limited memory. 🌎

Inference

  • A notebook on how to run the LLaMA Model using PeftModel from the 🤗 PEFT library. 🌎
  • A notebook on how to load a PEFT adapter LLaMA model with LangChain. 🌎

🚀 Deploy

  • A notebook on how to fine-tune LLaMA model using LoRA method via the 🤗 PEFT library with intuitive UI. 🌎
  • A notebook on how to deploy Open-LLaMA model for text generation on Amazon SageMaker. 🌎

LlamaConfig

autodoc LlamaConfig

LlamaTokenizer

autodoc LlamaTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary

LlamaTokenizerFast

autodoc LlamaTokenizerFast - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - update_post_processor - save_vocabulary

LlamaModel

autodoc LlamaModel - forward

LlamaForCausalLM

autodoc LlamaForCausalLM - forward

LlamaForSequenceClassification

autodoc LlamaForSequenceClassification - forward

FlaxLlamaModel

autodoc FlaxLlamaModel - call

FlaxLlamaForCausalLM

autodoc FlaxLlamaForCausalLM - call