transformers/optimization_test_pytorch.py
2018-11-03 12:23:00 +01:00

46 lines
1.6 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import torch
import optimization_pytorch as optimization
class OptimizationTest(unittest.TestCase):
def assertListAlmostEqual(self, list1, list2, tol):
self.assertEqual(len(list1), len(list2))
for a, b in zip(list1, list2):
self.assertAlmostEqual(a, b, delta=tol)
def test_adam(self):
w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
x = torch.tensor([0.4, 0.2, -0.5])
criterion = torch.nn.MSELoss(reduction='elementwise_mean')
optimizer = optimization.BERTAdam(params={w}, lr=0.2, schedule='warmup_linear', warmup=0.1, t_total=100)
for _ in range(100):
loss = criterion(w, x)
loss.backward()
optimizer.step()
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)
if __name__ == "__main__":
unittest.main()