mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
fix optimization_test
This commit is contained in:
parent
45efc9d807
commit
0d8d2285ba
@ -16,10 +16,11 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import optimization_pytorch as optimization
|
||||
import torch
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
|
||||
import optimization_pytorch as optimization
|
||||
|
||||
class OptimizationTest(unittest.TestCase):
|
||||
|
||||
@ -34,8 +35,7 @@ class OptimizationTest(unittest.TestCase):
|
||||
criterion = torch.nn.MSELoss(reduction='elementwise_mean')
|
||||
optimizer = optimization.BERTAdam(params={w}, lr=0.2, schedule='warmup_linear', warmup=0.1, t_total=100)
|
||||
for _ in range(100):
|
||||
# TODO Solve: reduction='elementwise_mean'=True not taken into account so division by x.size(0) is necessary
|
||||
loss = criterion(x, w) / x.size(0)
|
||||
loss = criterion(w, x)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)
|
||||
|
3
requirements.txt
Normal file
3
requirements.txt
Normal file
@ -0,0 +1,3 @@
|
||||
torch
|
||||
tqdm
|
||||
pytest
|
@ -24,6 +24,7 @@ import logging
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
from tqdm import tqdm, trange
|
||||
import torch
|
||||
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
@ -513,8 +514,8 @@ def main():
|
||||
|
||||
model.train()
|
||||
nb_tr_examples = 0
|
||||
for epoch in range(int(args.num_train_epochs)):
|
||||
for input_ids, input_mask, segment_ids, label_ids in train_dataloader:
|
||||
for epoch in trange(args.num_train_epochs, desc="Epoch"):
|
||||
for input_ids, input_mask, segment_ids, label_ids in tqdm(train_dataloader, desc="Iteration"):
|
||||
input_ids = input_ids.to(device)
|
||||
input_mask = input_mask.float().to(device)
|
||||
segment_ids = segment_ids.to(device)
|
||||
|
Loading…
Reference in New Issue
Block a user