mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00

* Translated model_doc/bert.md * Revise grammatical errors * Changed _toctree.yml * Revise some errors
258 lines
9.2 KiB
Markdown
258 lines
9.2 KiB
Markdown
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||
the License. You may obtain a copy of the License at
|
||
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
specific language governing permissions and limitations under the License.
|
||
|
||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||
rendered properly in your Markdown viewer.
|
||
|
||
-->
|
||
|
||
<div style="float: right;">
|
||
<div class="flex flex-wrap space-x-1">
|
||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||
">
|
||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||
</div>
|
||
</div>
|
||
|
||
# BERT
|
||
|
||
[BERT](https://huggingface.co/papers/1810.04805) 是一个在无标签的文本数据上预训练的双向 transformer,用于预测句子中被掩码的(masked) token,以及预测一个句子是否跟随在另一个句子之后。其主要思想是,在预训练过程中,通过随机掩码一些 token,让模型利用左右上下文的信息预测它们,从而获得更全面深入的理解。此外,BERT 具有很强的通用性,其学习到的语言表示可以通过额外的层或头进行微调,从而适配其他下游 NLP 任务。
|
||
|
||
你可以在 [BERT](https://huggingface.co/collections/google/bert-release-64ff5e7a4be99045d1896dbc) 集合下找到 BERT 的所有原始 checkpoint。
|
||
|
||
> [!TIP]
|
||
> 点击右侧边栏中的 BERT 模型,以查看将 BERT 应用于不同语言任务的更多示例。
|
||
|
||
下面的示例演示了如何使用 [`Pipeline`], [`AutoModel`] 和命令行预测 `[MASK]` token。
|
||
|
||
<hfoptions id="usage">
|
||
<hfoption id="Pipeline">
|
||
|
||
```py
|
||
import torch
|
||
from transformers import pipeline
|
||
|
||
pipeline = pipeline(
|
||
task="fill-mask",
|
||
model="google-bert/bert-base-uncased",
|
||
torch_dtype=torch.float16,
|
||
device=0
|
||
)
|
||
pipeline("Plants create [MASK] through a process known as photosynthesis.")
|
||
```
|
||
|
||
</hfoption>
|
||
<hfoption id="AutoModel">
|
||
|
||
```py
|
||
import torch
|
||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||
|
||
tokenizer = AutoTokenizer.from_pretrained(
|
||
"google-bert/bert-base-uncased",
|
||
)
|
||
model = AutoModelForMaskedLM.from_pretrained(
|
||
"google-bert/bert-base-uncased",
|
||
torch_dtype=torch.float16,
|
||
device_map="auto",
|
||
attn_implementation="sdpa"
|
||
)
|
||
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt").to("cuda")
|
||
|
||
with torch.no_grad():
|
||
outputs = model(**inputs)
|
||
predictions = outputs.logits
|
||
|
||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||
predicted_token = tokenizer.decode(predicted_token_id)
|
||
|
||
print(f"The predicted token is: {predicted_token}")
|
||
```
|
||
|
||
</hfoption>
|
||
<hfoption id="transformers-cli">
|
||
|
||
```bash
|
||
echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers-cli run --task fill-mask --model google-bert/bert-base-uncased --device 0
|
||
```
|
||
|
||
</hfoption>
|
||
</hfoptions>
|
||
|
||
## 注意
|
||
|
||
- 输入内容应在右侧进行填充,因为 BERT 使用绝对位置嵌入。
|
||
## BertConfig
|
||
|
||
[[autodoc]] BertConfig
|
||
- all
|
||
|
||
## BertTokenizer
|
||
|
||
[[autodoc]] BertTokenizer
|
||
- build_inputs_with_special_tokens
|
||
- get_special_tokens_mask
|
||
- create_token_type_ids_from_sequences
|
||
- save_vocabulary
|
||
|
||
## BertTokenizerFast
|
||
|
||
[[autodoc]] BertTokenizerFast
|
||
|
||
## BertModel
|
||
|
||
[[autodoc]] BertModel
|
||
- forward
|
||
|
||
## BertForPreTraining
|
||
|
||
[[autodoc]] BertForPreTraining
|
||
- forward
|
||
|
||
## BertLMHeadModel
|
||
|
||
[[autodoc]] BertLMHeadModel
|
||
- forward
|
||
|
||
## BertForMaskedLM
|
||
|
||
[[autodoc]] BertForMaskedLM
|
||
- forward
|
||
|
||
## BertForNextSentencePrediction
|
||
|
||
[[autodoc]] BertForNextSentencePrediction
|
||
- forward
|
||
|
||
## BertForSequenceClassification
|
||
|
||
[[autodoc]] BertForSequenceClassification
|
||
- forward
|
||
|
||
## BertForMultipleChoice
|
||
|
||
[[autodoc]] BertForMultipleChoice
|
||
- forward
|
||
|
||
## BertForTokenClassification
|
||
|
||
[[autodoc]] BertForTokenClassification
|
||
- forward
|
||
|
||
## BertForQuestionAnswering
|
||
|
||
[[autodoc]] BertForQuestionAnswering
|
||
- forward
|
||
|
||
## TFBertTokenizer
|
||
|
||
[[autodoc]] TFBertTokenizer
|
||
|
||
## TFBertModel
|
||
|
||
[[autodoc]] TFBertModel
|
||
- call
|
||
|
||
## TFBertForPreTraining
|
||
|
||
[[autodoc]] TFBertForPreTraining
|
||
- call
|
||
|
||
## TFBertModelLMHeadModel
|
||
|
||
[[autodoc]] TFBertLMHeadModel
|
||
- call
|
||
|
||
## TFBertForMaskedLM
|
||
|
||
[[autodoc]] TFBertForMaskedLM
|
||
- call
|
||
|
||
## TFBertForNextSentencePrediction
|
||
|
||
[[autodoc]] TFBertForNextSentencePrediction
|
||
- call
|
||
|
||
## TFBertForSequenceClassification
|
||
|
||
[[autodoc]] TFBertForSequenceClassification
|
||
- call
|
||
|
||
## TFBertForMultipleChoice
|
||
|
||
[[autodoc]] TFBertForMultipleChoice
|
||
- call
|
||
|
||
## TFBertForTokenClassification
|
||
|
||
[[autodoc]] TFBertForTokenClassification
|
||
- call
|
||
|
||
## TFBertForQuestionAnswering
|
||
|
||
[[autodoc]] TFBertForQuestionAnswering
|
||
- call
|
||
|
||
## FlaxBertModel
|
||
|
||
[[autodoc]] FlaxBertModel
|
||
- __call__
|
||
|
||
## FlaxBertForPreTraining
|
||
|
||
[[autodoc]] FlaxBertForPreTraining
|
||
- __call__
|
||
|
||
## FlaxBertForCausalLM
|
||
|
||
[[autodoc]] FlaxBertForCausalLM
|
||
- __call__
|
||
|
||
## FlaxBertForMaskedLM
|
||
|
||
[[autodoc]] FlaxBertForMaskedLM
|
||
- __call__
|
||
|
||
## FlaxBertForNextSentencePrediction
|
||
|
||
[[autodoc]] FlaxBertForNextSentencePrediction
|
||
- __call__
|
||
|
||
## FlaxBertForSequenceClassification
|
||
|
||
[[autodoc]] FlaxBertForSequenceClassification
|
||
- __call__
|
||
|
||
## FlaxBertForMultipleChoice
|
||
|
||
[[autodoc]] FlaxBertForMultipleChoice
|
||
- __call__
|
||
|
||
## FlaxBertForTokenClassification
|
||
|
||
[[autodoc]] FlaxBertForTokenClassification
|
||
- __call__
|
||
|
||
## FlaxBertForQuestionAnswering
|
||
|
||
[[autodoc]] FlaxBertForQuestionAnswering
|
||
- __call__
|
||
|
||
## Bert specific outputs
|
||
|
||
[[autodoc]] models.bert.modeling_bert.BertForPreTrainingOutput
|
||
|
||
[[autodoc]] models.bert.modeling_tf_bert.TFBertForPreTrainingOutput
|
||
|
||
[[autodoc]] models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput |