transformers/examples/flax/language-modeling/README.md
Patrick von Platen 00440e350f
[Flax MLM] Refactor run mlm with optax (#11745)
* refactor

* update

* update

* update

* refactor run mlm

* finalize

* refactor more

* fix typo

* update

* finish refactor

* modify run mlm

* Apply suggestions from code review

* Apply suggestions from code review

* Apply suggestions from code review

* small fixes

* upload

* upload

* finish run mlm script

Co-authored-by: Patrick von Platen <patrick@huggingface.co>
2021-05-19 12:00:58 +01:00

130 lines
4.6 KiB
Markdown

<!---
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Language model training examples
The following example showcases how to train a language model from scratch
using the JAX/Flax backend.
JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU.
Models written in JAX/Flax are **immutable** and updated in a purely functional
way which enables simple and efficient model parallelism.
## Masked language modeling
In the following, we demonstrate how to train a bi-directional transformer model
using masked language modeling objective as introduced in [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805).
More specifically, we demonstrate how JAX/Flax can be leveraged
to pre-train [**`roberta-base`**](https://huggingface.co/roberta-base)
in Norwegian on a single TPUv3-8 pod.
The example script uses the 🤗 Datasets library. You can easily customize them to your needs if you need extra processing on your datasets.
Let's start by creating a folder to save the trained model and a symbolic link to the `run_mlm_flax.py` script.
```bash
export MODEL_DIR="./norwegian-roberta-base"
mkdir -p ${MODEL_DIR}
ln -s ~/transformers/examples/flax/language-modeling/run_mlm_flax.py run_mlm_flax.py
```
### Train tokenizer
In the first step, we train a tokenizer to efficiently process the text input for the model. Similar to how it is shown in [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train), we use a **`ByteLevelBPETokenizer`**.
The tokenizer is trained on the complete Norwegian dataset of OSCAR
and consequently saved in `${MODEL_DIR}`
This can take up to 10 minutes depending on your hardware ☕.
```python
from datasets import load_dataset
from tokenizers import trainers, Tokenizer, normalizers, ByteLevelBPETokenizer
model_dir = "./norwegian-roberta-base" # ${MODEL_DIR}
# load dataset
dataset = load_dataset("oscar", "unshuffled_deduplicated_no", split="train")
# Instantiate tokenizer
tokenizer = ByteLevelBPETokenizer()
def batch_iterator(batch_size=1000):
for i in range(0, len(dataset), batch_size):
yield dataset[i: i + batch_size]["text"]
# Customized training
tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
"<s>",
"<pad>",
"</s>",
"<unk>",
"<mask>",
])
# Save files to disk
tokenizer.save(f"{model_dir}/tokenizer.json")
```
### Create configuration
Next, we create the model's configuration file. This is as simple
as loading and storing [`**roberta-base**`](https://huggingface.co/roberta-base)
in the local model folder:
```python
from transformers import RobertaConfig
model_dir = "./norwegian-roberta-base" # ${MODEL_DIR}
config = RobertaConfig.from_pretrained("roberta-base")
config.save_pretrained(model_dir)
```
### Train model
Next we can run the example script to pretrain the model:
```bash
./run_mlm_flax.py \
--output_dir="./runs" \
--model_type="roberta" \
--config_name="${MODEL_DIR}" \
--tokenizer_name="${MODEL_DIR}" \
--dataset_name="oscar" \
--dataset_config_name="unshuffled_deduplicated_no" \
--max_seq_length="128" \
--weight_decay="0.01" \
--per_device_train_batch_size="128" \
--per_device_eval_batch_size="128" \
--learning_rate="3e-4" \
--warmup_steps="1000" \
--overwrite_output_dir \
--pad_to_max_length \
--num_train_epochs="18" \
--adam_beta1="0.9" \
--adam_beta2="0.98"
```
Training should converge at a loss and accuracy
of 1.78 and 0.64 respectively after 18 epochs on a single TPUv3-8.
This should take less than 18 hours.
Training statistics can be accessed on [tfhub.de](https://tensorboard.dev/experiment/GdYmdak2TWeVz0DDRYOrrg).
For a step-by-step walkthrough of how to do masked language modeling in Flax, please have a
look at [this TODO: (Patrick)]() google colab.
## TODO(Patrick): Add comparison with PyTorch GPU/TPU