mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
767 lines
32 KiB
Python
767 lines
32 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Gemma model."""
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
import pytest
|
|
from packaging import version
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GemmaConfig, is_torch_available
|
|
from transformers.generation.configuration_utils import GenerationConfig
|
|
from transformers.testing_utils import (
|
|
cleanup,
|
|
is_flaky,
|
|
require_bitsandbytes,
|
|
require_flash_attn,
|
|
require_read_token,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
require_torch_gpu,
|
|
require_torch_sdpa,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
GemmaForCausalLM,
|
|
GemmaForSequenceClassification,
|
|
GemmaForTokenClassification,
|
|
GemmaModel,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class GemmaModelTester:
|
|
config_class = GemmaConfig
|
|
if is_torch_available():
|
|
model_class = GemmaModel
|
|
for_causal_lm_class = GemmaForCausalLM
|
|
for_sequence_class = GemmaForSequenceClassification
|
|
for_token_class = GemmaForTokenClassification
|
|
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=False,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
num_key_value_heads=2,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
pad_token_id=0,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.pad_token_id = pad_token_id
|
|
self.scope = scope
|
|
self.head_dim = self.hidden_size // self.num_attention_heads
|
|
|
|
# Copied from tests.models.mistral.test_modeling_mistral.MistralModelTester.prepare_config_and_inputs
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def get_config(self):
|
|
return self.config_class(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
num_key_value_heads=self.num_key_value_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
pad_token_id=self.pad_token_id,
|
|
head_dim=self.head_dim,
|
|
)
|
|
|
|
def create_and_check_model(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = self.model_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Gemma
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class GemmaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(GemmaModel, GemmaForCausalLM, GemmaForSequenceClassification, GemmaForTokenClassification)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": GemmaModel,
|
|
"text-classification": GemmaForSequenceClassification,
|
|
"token-classification": GemmaForTokenClassification,
|
|
"text-generation": GemmaForCausalLM,
|
|
"zero-shot": GemmaForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
|
|
# Need to remove 0.9 in `test_cpu_offload`
|
|
# This is because we are hitting edge cases with the causal_mask buffer
|
|
model_split_percents = [0.5, 0.6]
|
|
|
|
# used in `test_torch_compile_for_training`
|
|
_torch_compile_train_cls = GemmaForCausalLM if is_torch_available() else None
|
|
|
|
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
|
|
def is_pipeline_test_to_skip(
|
|
self,
|
|
pipeline_test_case_name,
|
|
config_class,
|
|
model_architecture,
|
|
tokenizer_name,
|
|
image_processor_name,
|
|
feature_extractor_name,
|
|
processor_name,
|
|
):
|
|
return True
|
|
|
|
def setUp(self):
|
|
self.model_tester = GemmaModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=GemmaConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_various_embeddings(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
for type in ["absolute", "relative_key", "relative_key_query"]:
|
|
config_and_inputs[0].position_embedding_type = type
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_Gemma_sequence_classification_model(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
|
|
model = self.model_tester.for_sequence_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
|
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
|
|
|
def test_Gemma_sequence_classification_model_for_single_label(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
config.problem_type = "single_label_classification"
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
|
|
model = self.model_tester.for_sequence_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
|
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
|
|
|
def test_Gemma_sequence_classification_model_for_multi_label(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
config.problem_type = "multi_label_classification"
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
sequence_labels = ids_tensor(
|
|
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
|
|
).to(torch.float)
|
|
model = self.model_tester.for_sequence_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
|
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
|
|
|
def test_Gemma_token_classification_model(self):
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_labels = 3
|
|
input_ids = input_dict["input_ids"]
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
|
|
model = self.model_tester.for_token_class(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
|
|
self.assertEqual(
|
|
result.logits.shape,
|
|
(self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
|
|
)
|
|
|
|
@unittest.skip(reason="Gemma uses GQA on all models so the KV cache is a non standard format")
|
|
def test_past_key_values_format(self):
|
|
pass
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
self.skipTest(reason="Gemma flash attention does not support right padding")
|
|
|
|
@require_torch_sdpa
|
|
@require_torch_accelerator
|
|
@slow
|
|
def test_sdpa_equivalence(self):
|
|
for model_class in self.all_model_classes:
|
|
if not model_class._supports_sdpa:
|
|
self.skipTest(reason="Model does not support SDPA")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_sdpa = model_class.from_pretrained(
|
|
tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa"
|
|
)
|
|
model_sdpa.to(torch_device)
|
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="eager")
|
|
model.to(torch_device)
|
|
|
|
dummy_input = inputs_dict[model_class.main_input_name]
|
|
dummy_input = dummy_input.to(torch_device)
|
|
outputs = model(dummy_input, output_hidden_states=True)
|
|
outputs_sdpa = model_sdpa(dummy_input, output_hidden_states=True)
|
|
|
|
logits = outputs.hidden_states[-1]
|
|
logits_sdpa = outputs_sdpa.hidden_states[-1]
|
|
|
|
# gemma sdpa needs a high tolerance
|
|
assert torch.allclose(logits_sdpa, logits, atol=3e-3)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@pytest.mark.flash_attn_test
|
|
@is_flaky()
|
|
@slow
|
|
def test_flash_attn_2_equivalence(self):
|
|
for model_class in self.all_model_classes:
|
|
if not model_class._supports_flash_attn_2:
|
|
self.skipTest(reason="Model does not support Flash Attention 2")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_fa = model_class.from_pretrained(
|
|
tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
|
|
)
|
|
model_fa.to(torch_device)
|
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="eager")
|
|
model.to(torch_device)
|
|
|
|
dummy_input = inputs_dict[model_class.main_input_name]
|
|
dummy_input = dummy_input.to(torch_device)
|
|
outputs = model(dummy_input, output_hidden_states=True)
|
|
outputs_fa = model_fa(dummy_input, output_hidden_states=True)
|
|
|
|
logits = outputs.hidden_states[-1]
|
|
logits_fa = outputs_fa.hidden_states[-1]
|
|
|
|
# gemma flash attention 2 needs a high tolerance
|
|
assert torch.allclose(logits_fa, logits, atol=3e-3)
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class GemmaIntegrationTest(unittest.TestCase):
|
|
input_text = ["Hello I am doing", "Hi today"]
|
|
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
|
|
# Depending on the hardware we get different logits / generations
|
|
cuda_compute_capability_major_version = None
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
if is_torch_available() and torch.cuda.is_available():
|
|
# 8 is for A100 / A10 and 7 for T4
|
|
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
|
|
|
|
def tearDown(self):
|
|
# See LlamaIntegrationTest.tearDown(). Can be removed once LlamaIntegrationTest.tearDown() is removed.
|
|
cleanup(torch_device, gc_collect=False)
|
|
|
|
@require_read_token
|
|
def test_model_2b_fp16(self):
|
|
model_id = "google/gemma-2b"
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
|
|
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
|
|
torch_device
|
|
)
|
|
|
|
model.generation_config.cache_implementation = "static"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_read_token
|
|
def test_model_2b_bf16(self):
|
|
model_id = "google/gemma-2b"
|
|
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
|
|
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Khichdi",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
|
|
torch_device
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_read_token
|
|
def test_model_2b_eager(self):
|
|
model_id = "google/gemma-2b"
|
|
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
|
|
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Khichdi",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="eager"
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_torch_sdpa
|
|
@require_read_token
|
|
def test_model_2b_sdpa(self):
|
|
model_id = "google/gemma-2b"
|
|
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
|
|
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Khichdi",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="sdpa"
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_flash_attn
|
|
@require_read_token
|
|
@pytest.mark.flash_attn_test
|
|
def test_model_2b_flash_attn(self):
|
|
model_id = "google/gemma-2b"
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music",
|
|
"Hi today I am going to share with you a very easy and simple recipe of <strong><em>Kaju Kat",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_bitsandbytes
|
|
@require_read_token
|
|
def test_model_2b_4bit(self):
|
|
model_id = "google/gemma-2b"
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project and I need to make a 3d model of a house. I have been using",
|
|
"Hi today I'd like to share with you my experience with the new wattpad wattpad wattpad wattpad wattpad wattpad wattpad",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, load_in_4bit=True)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@unittest.skip(reason="The test will not fit our CI runners")
|
|
@require_read_token
|
|
def test_model_7b_fp32(self):
|
|
model_id = "google/gemma-7b"
|
|
EXPECTED_TEXTS = [
|
|
"Hello my name is ***** ***** I will be assisting you today. I am sorry to hear about your issue. I will",
|
|
"Hi,\n\nI have a problem with my 2005 1.6 16",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True).to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_read_token
|
|
def test_model_7b_fp16(self):
|
|
if self.cuda_compute_capability_major_version == 7:
|
|
self.skipTest("This test is failing (`torch.compile` fails) on Nvidia T4 GPU (OOM).")
|
|
|
|
model_id = "google/gemma-7b"
|
|
EXPECTED_TEXTS = [
|
|
"""Hello I am doing a project on a 1999 4.0L 4x4. I""",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY 3D",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
|
|
torch_device
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_read_token
|
|
def test_model_7b_bf16(self):
|
|
if self.cuda_compute_capability_major_version == 7:
|
|
self.skipTest("This test is failing (`torch.compile` fails) on Nvidia T4 GPU (OOM).")
|
|
|
|
model_id = "google/gemma-7b"
|
|
|
|
# Key 9 for MI300, Key 8 for A100/A10, and Key 7 for T4.
|
|
#
|
|
# Note: Key 9 is currently set for MI300, but may need potential future adjustments for H100s,
|
|
# considering differences in hardware processing and potential deviations in generated text.
|
|
EXPECTED_TEXTS = {
|
|
7: [
|
|
"""Hello I am doing a project on a 1991 240sx and I am trying to find""",
|
|
"Hi today I am going to show you how to make a very simple and easy to make a very simple and",
|
|
],
|
|
8: [
|
|
"Hello I am doing a project for my school and I am trying to make a program that will read a .txt file",
|
|
"Hi today I am going to show you how to make a very simple and easy to make a very simple and",
|
|
],
|
|
9: [
|
|
"Hello I am doing a project for my school and I am trying to get a servo to move a certain amount of degrees",
|
|
"Hi today I am going to show you how to make a very simple and easy to make DIY light up sign",
|
|
],
|
|
}
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
|
|
torch_device
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
self.assertEqual(output_text, EXPECTED_TEXTS[self.cuda_compute_capability_major_version])
|
|
|
|
@require_read_token
|
|
def test_model_7b_fp16_static_cache(self):
|
|
if self.cuda_compute_capability_major_version == 7:
|
|
self.skipTest("This test is failing (`torch.compile` fails) on Nvidia T4 GPU (OOM).")
|
|
|
|
model_id = "google/gemma-7b"
|
|
EXPECTED_TEXTS = [
|
|
"""Hello I am doing a project on a 1999 4.0L 4x4. I""",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY 3D",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(
|
|
torch_device
|
|
)
|
|
|
|
model.generation_config.cache_implementation = "static"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_bitsandbytes
|
|
@require_read_token
|
|
def test_model_7b_4bit(self):
|
|
model_id = "google/gemma-7b"
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project for my school and I am trying to make a program that will take a number and then",
|
|
"Hi today I am going to talk about the best way to get rid of acne. miniaturing is a very",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, load_in_4bit=True)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
@require_read_token
|
|
def test_compile_static_cache(self):
|
|
# `torch==2.2` will throw an error on this test (as in other compilation tests), but torch==2.1.2 and torch>2.2
|
|
# work as intended. See https://github.com/pytorch/pytorch/issues/121943
|
|
if version.parse(torch.__version__) < version.parse("2.3.0"):
|
|
self.skipTest(reason="This test requires torch >= 2.3 to run.")
|
|
|
|
NUM_TOKENS_TO_GENERATE = 40
|
|
EXPECTED_TEXT_COMPLETION = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music was in the 1990s. I have looked on the internet and I have found",
|
|
"Hi today\nI have a problem with my 2007 1.9 tdi 105bhp.\nI have a problem with the engine management light on.\nI have checked the",
|
|
]
|
|
|
|
prompts = ["Hello I am doing", "Hi today"]
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b", pad_token="</s>", padding_side="right")
|
|
model = GemmaForCausalLM.from_pretrained("google/gemma-2b", device_map=torch_device, torch_dtype=torch.float16)
|
|
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
|
|
|
|
# Dynamic Cache
|
|
generated_ids = model.generate(**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False)
|
|
dynamic_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, dynamic_text) # Both GPU architectures have the same output
|
|
|
|
# Static Cache
|
|
generated_ids = model.generate(
|
|
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
|
|
)
|
|
static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, static_text)
|
|
|
|
# Static Cache + compile
|
|
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
|
generated_ids = model.generate(
|
|
**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
|
|
)
|
|
static_compiled_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, static_compiled_text)
|
|
|
|
@slow
|
|
@require_read_token
|
|
def test_export_static_cache(self):
|
|
if version.parse(torch.__version__) < version.parse("2.3.0"):
|
|
self.skipTest(reason="This test requires torch >= 2.3 to run.")
|
|
|
|
from transformers.integrations.executorch import (
|
|
TorchExportableModuleWithStaticCache,
|
|
convert_and_export_with_cache,
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b", pad_token="</s>", padding_side="right")
|
|
EXPECTED_TEXT_COMPLETION = [
|
|
"Hello I am doing a project on the 1990s and I need to know what the most popular music was in the 1990s. I have looked on the internet and I have found",
|
|
]
|
|
max_generation_length = tokenizer(EXPECTED_TEXT_COMPLETION, return_tensors="pt", padding=True)[
|
|
"input_ids"
|
|
].shape[-1]
|
|
|
|
# Load model
|
|
device = "cpu"
|
|
dtype = torch.bfloat16
|
|
cache_implementation = "static"
|
|
attn_implementation = "sdpa"
|
|
batch_size = 1
|
|
model = GemmaForCausalLM.from_pretrained(
|
|
"google/gemma-2b",
|
|
device_map=device,
|
|
torch_dtype=dtype,
|
|
attn_implementation=attn_implementation,
|
|
generation_config=GenerationConfig(
|
|
use_cache=True,
|
|
cache_implementation=cache_implementation,
|
|
max_length=max_generation_length,
|
|
cache_config={
|
|
"batch_size": batch_size,
|
|
"max_cache_len": max_generation_length,
|
|
},
|
|
),
|
|
)
|
|
|
|
prompts = ["Hello I am doing"]
|
|
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
|
|
prompt_token_ids = prompt_tokens["input_ids"]
|
|
max_new_tokens = max_generation_length - prompt_token_ids.shape[-1]
|
|
|
|
# Static Cache + eager
|
|
eager_generated_ids = model.generate(
|
|
**prompt_tokens, max_new_tokens=max_new_tokens, do_sample=False, cache_implementation=cache_implementation
|
|
)
|
|
eager_generated_text = tokenizer.batch_decode(eager_generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, eager_generated_text)
|
|
|
|
# Static Cache + export
|
|
exported_program = convert_and_export_with_cache(model)
|
|
ep_generated_ids = TorchExportableModuleWithStaticCache.generate(
|
|
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=max_new_tokens
|
|
)
|
|
ep_generated_text = tokenizer.batch_decode(ep_generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, ep_generated_text)
|
|
|
|
def test_model_2b_bf16_dola(self):
|
|
model_id = "google/gemma-2b"
|
|
# ground truth text generated with dola_layers="low", repetition_penalty=1.2
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing an experiment and need to get the mass of a block. The problem is, it has no scale",
|
|
"Hi today we have the review for a <strong>2016/2017</strong> season of",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to(
|
|
torch_device
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(
|
|
**inputs, max_new_tokens=20, do_sample=False, dola_layers="low", repetition_penalty=1.2
|
|
)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|