mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 19:21:31 +06:00
Purge unused ModelTester code (#37085)
* Purge correctly this time * Remove more methods from recent PRs * make fixup
This commit is contained in:
parent
1b29409d89
commit
2d46a08b63
@ -198,16 +198,6 @@ class AlbertModelTester:
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
||||
|
||||
def create_and_check_for_token_classification(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
config.num_labels = self.num_labels
|
||||
model = AlbertForTokenClassification(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
||||
|
||||
def create_and_check_for_multiple_choice(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
|
@ -168,19 +168,6 @@ class AriaVisionText2TextModelTester:
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_aria_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask):
|
||||
model = AriaForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
|
||||
@require_torch
|
||||
class AriaForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
||||
|
@ -154,33 +154,6 @@ class AyaVisionVisionText2TextModelTester:
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask):
|
||||
model = AyaVisionForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.half()
|
||||
model.eval()
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
pixel_values=pixel_values,
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
def create_and_check_model_fp16_autocast_forward(self, config, input_ids, pixel_values, attention_mask):
|
||||
config.torch_dtype = torch.float16
|
||||
model = AyaVisionForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
pixel_values=pixel_values,
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
|
||||
@require_torch
|
||||
class AyaVisionModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||
|
@ -235,24 +235,6 @@ class BigBirdModelTester:
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = BigBirdForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_for_masked_lm(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
|
@ -136,24 +136,6 @@ class BioGptModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = BioGptForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_biogpt_model_attention_mask_past(
|
||||
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
|
||||
):
|
||||
|
@ -275,14 +275,6 @@ class BloomModelTester:
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
||||
|
||||
def create_and_check_question_answering_model(self, config, input_ids, input_mask, *args):
|
||||
model = BloomForQuestionAnswering(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
||||
|
||||
def create_and_check_forward_and_backwards(
|
||||
self, config, input_ids, input_mask, *args, gradient_checkpointing=False
|
||||
):
|
||||
|
@ -180,83 +180,6 @@ class ChameleonModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = ChameleonForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
model = ChameleonForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -146,116 +146,6 @@ class CohereModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = self.model_class(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = self.for_causal_lm_class(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = self.for_causal_lm_class(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -119,35 +119,6 @@ class ConvNextV2ModelTester:
|
||||
result = model(pixel_values, labels=labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
||||
|
||||
def create_and_check_backbone(self, config, pixel_values, labels):
|
||||
model = ConvNextV2Backbone(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(pixel_values)
|
||||
|
||||
# verify hidden states
|
||||
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
|
||||
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4])
|
||||
|
||||
# verify channels
|
||||
self.parent.assertEqual(len(model.channels), len(config.out_features))
|
||||
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:])
|
||||
|
||||
# verify backbone works with out_features=None
|
||||
config.out_features = None
|
||||
model = ConvNextV2Backbone(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(pixel_values)
|
||||
|
||||
# verify feature maps
|
||||
self.parent.assertEqual(len(result.feature_maps), 1)
|
||||
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1])
|
||||
|
||||
# verify channels
|
||||
self.parent.assertEqual(len(model.channels), 1)
|
||||
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]])
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, pixel_values, labels = config_and_inputs
|
||||
|
@ -180,15 +180,6 @@ class CTRLModelTester:
|
||||
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_ctrl_for_sequence_classification(self, config, input_ids, head_mask, token_type_ids, *args):
|
||||
config.num_labels = self.num_labels
|
||||
model = CTRLForSequenceClassification(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
||||
result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
||||
|
||||
|
||||
@require_torch
|
||||
class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||
|
@ -184,32 +184,6 @@ class Data2VecAudioModelTester:
|
||||
(self.batch_size, self.adapter_output_seq_length, config.output_hidden_size),
|
||||
)
|
||||
|
||||
def create_and_check_batch_inference(self, config, input_values, *args):
|
||||
# test does not pass for models making use of `group_norm`
|
||||
# check: https://github.com/pytorch/fairseq/issues/3227
|
||||
model = Data2VecAudioModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
input_values = input_values[:3]
|
||||
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
|
||||
|
||||
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
||||
|
||||
# pad input
|
||||
for i in range(len(input_lengths)):
|
||||
input_values[i, input_lengths[i] :] = 0.0
|
||||
attention_mask[i, input_lengths[i] :] = 0.0
|
||||
|
||||
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
|
||||
|
||||
for i in range(input_values.shape[0]):
|
||||
input_slice = input_values[i : i + 1, : input_lengths[i]]
|
||||
output = model(input_slice).last_hidden_state
|
||||
|
||||
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
|
||||
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
|
||||
|
||||
def check_ctc_loss(self, config, input_values, *args):
|
||||
model = Data2VecAudioForCTC(config=config)
|
||||
model.to(torch_device)
|
||||
|
@ -191,118 +191,6 @@ class DbrxModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Dbrx
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = DbrxModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Dbrx
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = DbrxForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = DbrxForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Dbrx
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -193,116 +193,6 @@ class DeepseekV3ModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = DeepseekV3Model(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = DeepseekV3ForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = DeepseekV3ForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -159,116 +159,6 @@ class DiffLlamaModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = DiffLlamaModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = DiffLlamaForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = DiffLlamaForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -152,116 +152,6 @@ class FalconModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = FalconModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = FalconForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = FalconForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -22,7 +22,7 @@ from transformers.models.auto import get_values
|
||||
from transformers.testing_utils import require_tokenizers, require_torch, slow, torch_device
|
||||
|
||||
from ...test_configuration_common import ConfigTester
|
||||
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
||||
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
||||
from ...test_pipeline_mixin import PipelineTesterMixin
|
||||
|
||||
|
||||
@ -41,10 +41,6 @@ if is_torch_available():
|
||||
FNetModel,
|
||||
FNetTokenizerFast,
|
||||
)
|
||||
from transformers.models.fnet.modeling_fnet import (
|
||||
FNetBasicFourierTransform,
|
||||
is_scipy_available,
|
||||
)
|
||||
|
||||
|
||||
# Override ConfigTester
|
||||
@ -133,26 +129,6 @@ class FNetModelTester:
|
||||
tpu_short_seq_length=self.seq_length,
|
||||
)
|
||||
|
||||
@require_torch
|
||||
def create_and_check_fourier_transform(self, config):
|
||||
hidden_states = floats_tensor([self.batch_size, self.seq_length, config.hidden_size])
|
||||
transform = FNetBasicFourierTransform(config)
|
||||
fftn_output = transform(hidden_states)
|
||||
|
||||
config.use_tpu_fourier_optimizations = True
|
||||
if is_scipy_available():
|
||||
transform = FNetBasicFourierTransform(config)
|
||||
dft_output = transform(hidden_states)
|
||||
|
||||
config.max_position_embeddings = 4097
|
||||
transform = FNetBasicFourierTransform(config)
|
||||
fft_output = transform(hidden_states)
|
||||
|
||||
if is_scipy_available():
|
||||
self.parent.assertTrue(torch.allclose(fftn_output[0][0], dft_output[0][0], atol=1e-4))
|
||||
self.parent.assertTrue(torch.allclose(fft_output[0][0], dft_output[0][0], atol=1e-4))
|
||||
self.parent.assertTrue(torch.allclose(fftn_output[0][0], fft_output[0][0], atol=1e-4))
|
||||
|
||||
def create_and_check_model(self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels):
|
||||
model = FNetModel(config=config)
|
||||
model.to(torch_device)
|
||||
@ -185,19 +161,6 @@ class FNetModelTester:
|
||||
result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_for_next_sentence_prediction(
|
||||
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = FNetForNextSentencePrediction(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
token_type_ids=token_type_ids,
|
||||
next_sentence_label=sequence_labels,
|
||||
)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
|
||||
|
||||
def create_and_check_for_question_answering(
|
||||
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
|
@ -22,7 +22,7 @@ import requests
|
||||
from parameterized import parameterized
|
||||
|
||||
from transformers import FuyuConfig, is_torch_available, is_vision_available
|
||||
from transformers.testing_utils import require_torch, require_torch_accelerator, slow, torch_device
|
||||
from transformers.testing_utils import require_torch, require_torch_accelerator, slow
|
||||
from transformers.utils import cached_property
|
||||
|
||||
from ...generation.test_utils import GenerationTesterMixin
|
||||
@ -39,8 +39,6 @@ if is_torch_available() and is_vision_available():
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
from transformers import FuyuForCausalLM
|
||||
|
||||
|
||||
@ -133,125 +131,6 @@ class FuyuModelTester:
|
||||
pad_token_id=self.pad_token_id,
|
||||
)
|
||||
|
||||
def create_and_check_model(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
):
|
||||
model = FuyuForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = FuyuForCausalLM(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = FuyuForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = FuyuForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -168,116 +168,6 @@ class GemmaModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = self.model_class(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = self.for_causal_lm_class(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = self.for_causal_lm_class(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Gemma
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -156,113 +156,6 @@ class GlmModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = self.model_class(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = self.for_causal_lm_class(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = self.for_causal_lm_class(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Glm
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -138,33 +138,6 @@ class GotOcr2VisionText2TextModelTester:
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask):
|
||||
model = GotOcr2ForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.half()
|
||||
model.eval()
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
def create_and_check_model_fp16_autocast_forward(self, config, input_ids, pixel_values, attention_mask):
|
||||
config.torch_dtype = torch.float16
|
||||
model = GotOcr2ForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
|
||||
@require_torch
|
||||
class GotOcr2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||
|
@ -146,116 +146,6 @@ class GraniteModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = GraniteModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = GraniteForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = GraniteForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -145,116 +145,6 @@ class GraniteMoeModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = GraniteMoeModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = GraniteMoeForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = GraniteMoeForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -148,116 +148,6 @@ class GraniteMoeSharedModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = GraniteMoeSharedModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = GraniteMoeSharedForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = GraniteMoeSharedForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -150,116 +150,6 @@ class JetMoeModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = JetMoeModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = JetMoeForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = JetMoeForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -151,116 +151,6 @@ class LlamaModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = LlamaModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = LlamaForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = LlamaForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -160,19 +160,6 @@ class LlavaVisionText2TextModelTester:
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_llava_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask):
|
||||
model = LlavaForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
|
||||
@require_torch
|
||||
class LlavaForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
||||
|
@ -174,39 +174,6 @@ class LlavaNextVisionText2TextModelTester:
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_llava_next_model_fp16_forward(
|
||||
self, config, input_ids, pixel_values, attention_mask, image_sizes
|
||||
):
|
||||
model = LlavaNextForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.half()
|
||||
model.eval()
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
image_sizes=image_sizes,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
def create_and_check_llava_next_model_fp16_autocast_forward(
|
||||
self, config, input_ids, pixel_values, attention_mask, image_sizes
|
||||
):
|
||||
config.torch_dtype = torch.float16
|
||||
model = LlavaNextForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
image_sizes=image_sizes,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
|
||||
@require_torch
|
||||
class LlavaNextForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
||||
|
@ -188,41 +188,6 @@ class LlavaNextVideoVisionText2TextModelTester:
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_llava_next_video_model_fp16_forward(
|
||||
self, config, input_ids, pixel_values, pixel_values_videos, attention_mask, image_sizes
|
||||
):
|
||||
model = LlavaNextVideoForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.half()
|
||||
model.eval()
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
image_sizes=image_sizes,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
pixel_values_videos=pixel_values_videos.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
def create_and_check_llava_next_video_model_fp16_autocast_forward(
|
||||
self, config, input_ids, pixel_values, pixel_values_videos, attention_mask, image_sizes
|
||||
):
|
||||
config.torch_dtype = torch.float16
|
||||
model = LlavaNextVideoForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
image_sizes=image_sizes,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
pixel_values_videos=pixel_values_videos.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
|
||||
@require_torch
|
||||
class LlavaNextVideoForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
||||
|
@ -174,39 +174,6 @@ class LlavaOnevisionVisionText2TextModelTester:
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_llava_onevision_model_fp16_forward(
|
||||
self, config, input_ids, pixel_values, attention_mask, image_sizes
|
||||
):
|
||||
model = LlavaOnevisionForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.half()
|
||||
model.eval()
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
image_sizes=image_sizes,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
def create_and_check_llava_onevision_model_fp16_autocast_forward(
|
||||
self, config, input_ids, pixel_values, attention_mask, image_sizes
|
||||
):
|
||||
config.torch_dtype = torch.float16
|
||||
model = LlavaOnevisionForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
image_sizes=image_sizes,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
|
||||
@require_torch
|
||||
class LlavaOnevisionForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
||||
|
@ -157,15 +157,6 @@ class MegatronBertModelTester:
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
model = MegatronBertForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_megatron_bert_for_next_sequence_prediction(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
|
@ -159,119 +159,6 @@ class MistralModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Mistral
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = MistralModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Mistral
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = MistralForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Mistral
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = MistralForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -160,33 +160,6 @@ class Mistral3VisionText2TextModelTester:
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask):
|
||||
model = Mistral3ForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.half()
|
||||
model.eval()
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
def create_and_check_model_fp16_autocast_forward(self, config, input_ids, pixel_values, attention_mask):
|
||||
config.torch_dtype = torch.float16
|
||||
model = Mistral3ForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
|
||||
@require_torch
|
||||
class Mistral3ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||
|
@ -157,119 +157,6 @@ class MixtralModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Mixtral
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = MixtralModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Mixtral
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = MixtralForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Mixtral
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = MixtralForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Mixtral
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -109,41 +109,6 @@ class MoonshineModelTester:
|
||||
eos_token_id=self.eos_token_id,
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, input_values, attention_mask):
|
||||
model = MoonshineModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_values, attention_mask=attention_mask)
|
||||
self.parent.assertEqual(
|
||||
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
|
||||
)
|
||||
|
||||
def create_and_check_batch_inference(self, config, input_values, *args):
|
||||
# test does not pass for models making use of `group_norm`
|
||||
# check: https://github.com/pytorch/fairseq/issues/3227
|
||||
model = MoonshineModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
input_values = input_values[:3]
|
||||
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
|
||||
|
||||
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
||||
|
||||
# pad input
|
||||
for i in range(len(input_lengths)):
|
||||
input_values[i, input_lengths[i] :] = 0.0
|
||||
attention_mask[i, input_lengths[i] :] = 0.0
|
||||
|
||||
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
|
||||
|
||||
for i in range(input_values.shape[0]):
|
||||
input_slice = input_values[i : i + 1, : input_lengths[i]]
|
||||
output = model(input_slice).last_hidden_state
|
||||
|
||||
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
|
||||
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
|
||||
|
||||
def check_output_attentions(self, config, input_values, attention_mask):
|
||||
model = MoonshineModel(config=config)
|
||||
model.config.layerdrop = 1.0
|
||||
|
@ -287,14 +287,6 @@ class MptModelTester:
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
||||
|
||||
def create_and_check_question_answering_model(self, config, input_ids, input_mask, *args):
|
||||
model = MptForQuestionAnswering(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
||||
|
||||
def create_and_check_forward_and_backwards(
|
||||
self, config, input_ids, input_mask, *args, gradient_checkpointing=False
|
||||
):
|
||||
|
@ -169,38 +169,6 @@ class MraModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = MraModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_masked_lm(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
|
@ -146,116 +146,6 @@ class OlmoModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = OlmoModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = OlmoForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = OlmoForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -145,116 +145,6 @@ class Olmo2ModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = Olmo2Model(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = Olmo2ForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = Olmo2ForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -159,116 +159,6 @@ class OlmoeModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = OlmoeModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = OlmoeForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = OlmoeForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -151,116 +151,6 @@ class PersimmonModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = PersimmonModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = PersimmonForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = PersimmonForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -146,116 +146,6 @@ class PhiModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = PhiModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = PhiForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = PhiForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -198,119 +198,6 @@ class Phi3ModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Phi3
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = Phi3Model(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Phi3
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = Phi3ForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Phi3
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = Phi3ForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -190,19 +190,6 @@ class Phi4MultimodalModelTester:
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_model(self, config, input_ids, attention_mask):
|
||||
model = Phi4MultimodalForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertEqual(logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
|
||||
@require_torch
|
||||
class Phi4MultimodalModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
||||
|
@ -205,119 +205,6 @@ class PhimoeModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Phimoe
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = PhimoeModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Phimoe
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = PhimoeForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Phimoe
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = PhimoeForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -96,32 +96,6 @@ class PixtralVisionModelTester:
|
||||
initializer_range=self.initializer_range,
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, pixel_values):
|
||||
model = PixtralVisionModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
result = model(pixel_values)
|
||||
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
||||
image_size = (self.image_size, self.image_size)
|
||||
patch_size = (self.patch_size, self.patch_size)
|
||||
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
|
||||
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
||||
|
||||
def create_and_check_model_with_projection(self, config, pixel_values):
|
||||
model = PixtralVisionModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
result = model(pixel_values)
|
||||
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
||||
image_size = (self.image_size, self.image_size)
|
||||
patch_size = (self.patch_size, self.patch_size)
|
||||
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
|
||||
self.parent.assertEqual(result.image_embeds.shape, (self.batch_size, self.projection_dim))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, pixel_values, image_sizes = config_and_inputs
|
||||
|
@ -358,24 +358,6 @@ class Pop2PianoModelTester:
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def create_and_check_generate_with_past_key_values(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
decoder_input_ids,
|
||||
attention_mask,
|
||||
decoder_attention_mask,
|
||||
lm_labels,
|
||||
):
|
||||
model = Pop2PianoForConditionalGeneration(config=config).to(torch_device).eval()
|
||||
torch.manual_seed(0)
|
||||
output_without_past_cache = model.generate(
|
||||
input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False
|
||||
)
|
||||
torch.manual_seed(0)
|
||||
output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True)
|
||||
self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))
|
||||
|
||||
def create_and_check_model_fp16_forward(
|
||||
self,
|
||||
config,
|
||||
|
@ -121,24 +121,6 @@ class PvtModelTester:
|
||||
result = model(pixel_values)
|
||||
self.parent.assertIsNotNone(result.last_hidden_state)
|
||||
|
||||
def create_and_check_for_image_classification(self, config, pixel_values, labels):
|
||||
config.num_labels = self.type_sequence_label_size
|
||||
model = PvtForImageClassification(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(pixel_values, labels=labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
||||
|
||||
# test greyscale images
|
||||
config.num_channels = 1
|
||||
model = PvtForImageClassification(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
|
||||
result = model(pixel_values)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, pixel_values, labels = config_and_inputs
|
||||
|
@ -128,53 +128,6 @@ class PvtV2ModelTester(ModelTesterMixin):
|
||||
result = model(pixel_values)
|
||||
self.parent.assertIsNotNone(result.last_hidden_state)
|
||||
|
||||
def create_and_check_backbone(self, config, pixel_values, labels):
|
||||
model = PvtV2Backbone(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(pixel_values)
|
||||
|
||||
# verify feature maps
|
||||
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
|
||||
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4])
|
||||
|
||||
# verify channels
|
||||
self.parent.assertEqual(len(model.channels), len(config.out_features))
|
||||
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:])
|
||||
|
||||
# verify backbone works with out_features=None
|
||||
config.out_features = None
|
||||
model = PvtV2Backbone(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(pixel_values)
|
||||
|
||||
# verify feature maps
|
||||
self.parent.assertEqual(len(result.feature_maps), 1)
|
||||
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1])
|
||||
|
||||
# verify channels
|
||||
self.parent.assertEqual(len(model.channels), 1)
|
||||
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]])
|
||||
|
||||
def create_and_check_for_image_classification(self, config, pixel_values, labels):
|
||||
config.num_labels = self.num_labels
|
||||
model = PvtV2ForImageClassification(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(pixel_values, labels=labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
||||
|
||||
# test greyscale images
|
||||
config.num_channels = 1
|
||||
model = PvtV2ForImageClassification(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
|
||||
result = model(pixel_values)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, pixel_values, labels = config_and_inputs
|
||||
|
@ -169,119 +169,6 @@ class Qwen2ModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Qwen2
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = Qwen2Model(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Qwen2
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = Qwen2ForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Qwen2
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = Qwen2ForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -189,39 +189,6 @@ class Qwen2_5_VLVisionText2TextModelTester:
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_qwen2_5_vl_model_fp16_forward(
|
||||
self, config, input_ids, pixel_values, attention_mask, image_grid_thw
|
||||
):
|
||||
model = Qwen2_5_VLForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.half()
|
||||
model.eval()
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
image_grid_thw=image_grid_thw,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
def create_and_check_qwen2_5_vl_model_fp16_autocast_forward(
|
||||
self, config, input_ids, pixel_values, attention_mask, image_grid_thw
|
||||
):
|
||||
config.torch_dtype = torch.float16
|
||||
model = Qwen2_5_VLForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
image_grid_thw=image_grid_thw,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
|
||||
@require_torch
|
||||
class Qwen2_5_VLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
||||
|
@ -131,19 +131,6 @@ class Qwen2AudioModelTester:
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_qwen2audio_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask):
|
||||
model = Qwen2AudioForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
|
||||
@require_torch
|
||||
class Qwen2AudioForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestCase):
|
||||
|
@ -197,119 +197,6 @@ class Qwen2MoeModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Qwen2Moe
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = Qwen2MoeModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Qwen2Moe
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = Qwen2MoeForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Qwen2Moe
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = Qwen2MoeForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -184,39 +184,6 @@ class Qwen2VLVisionText2TextModelTester:
|
||||
}
|
||||
return config, inputs_dict
|
||||
|
||||
def create_and_check_qwen2_vl_model_fp16_forward(
|
||||
self, config, input_ids, pixel_values, attention_mask, image_grid_thw
|
||||
):
|
||||
model = Qwen2VLForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.half()
|
||||
model.eval()
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
image_grid_thw=image_grid_thw,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
def create_and_check_qwen2_vl_model_fp16_autocast_forward(
|
||||
self, config, input_ids, pixel_values, attention_mask, image_grid_thw
|
||||
):
|
||||
config.torch_dtype = torch.float16
|
||||
model = Qwen2VLForConditionalGeneration(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
||||
logits = model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
image_grid_thw=image_grid_thw,
|
||||
pixel_values=pixel_values.to(torch.bfloat16),
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
self.parent.assertFalse(torch.isnan(logits).any().item())
|
||||
|
||||
|
||||
@require_torch
|
||||
class Qwen2VLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
||||
|
@ -172,119 +172,6 @@ class Qwen3ModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Qwen3
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = Qwen3Model(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Qwen3
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = Qwen3ForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Qwen3
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = Qwen3ForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -191,119 +191,6 @@ class Qwen3MoeModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Qwen3Moe
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = Qwen3MoeModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Qwen3Moe
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = Qwen3MoeForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Qwen3Moe
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = Qwen3MoeForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -152,119 +152,6 @@ class RecurrentGemmaModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->RecurrentGemma
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = RecurrentGemmaModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->RecurrentGemma
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = RecurrentGemmaForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->RecurrentGemma
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = RecurrentGemmaForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->RecurrentGemma
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -200,24 +200,6 @@ class RemBertModelTester:
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = RemBertForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_for_masked_lm(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
|
@ -259,33 +259,6 @@ class RoCBertModelTester:
|
||||
)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
input_shape_ids,
|
||||
input_pronunciation_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = RoCBertForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
input_shape_ids=input_shape_ids,
|
||||
input_pronunciation_ids=input_pronunciation_ids,
|
||||
attention_mask=input_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
labels=token_labels,
|
||||
)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_for_masked_lm(
|
||||
self,
|
||||
config,
|
||||
|
@ -200,24 +200,6 @@ class RoFormerModelTester:
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = RoFormerForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_for_generate_causal_lm(
|
||||
self,
|
||||
config,
|
||||
|
@ -16,7 +16,7 @@
|
||||
import unittest
|
||||
|
||||
from transformers import RTDetrResNetConfig
|
||||
from transformers.testing_utils import require_torch, torch_device
|
||||
from transformers.testing_utils import require_torch
|
||||
from transformers.utils.import_utils import is_torch_available
|
||||
|
||||
from ...test_backbone_common import BackboneTesterMixin
|
||||
@ -84,35 +84,6 @@ class RTDetrResNetModelTester:
|
||||
out_indices=self.out_indices,
|
||||
)
|
||||
|
||||
def create_and_check_backbone(self, config, pixel_values, labels):
|
||||
model = RTDetrResNetBackbone(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(pixel_values)
|
||||
|
||||
# verify feature maps
|
||||
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
|
||||
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4])
|
||||
|
||||
# verify channels
|
||||
self.parent.assertEqual(len(model.channels), len(config.out_features))
|
||||
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:])
|
||||
|
||||
# verify backbone works with out_features=None
|
||||
config.out_features = None
|
||||
model = RTDetrResNetBackbone(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(pixel_values)
|
||||
|
||||
# verify feature maps
|
||||
self.parent.assertEqual(len(result.feature_maps), 1)
|
||||
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1])
|
||||
|
||||
# verify channels
|
||||
self.parent.assertEqual(len(model.channels), 1)
|
||||
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]])
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, pixel_values, labels = config_and_inputs
|
||||
|
@ -195,19 +195,6 @@ class RwkvModelTester:
|
||||
|
||||
self.parent.assertTrue(torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-5))
|
||||
|
||||
def create_and_check_forward_and_backwards(
|
||||
self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
|
||||
):
|
||||
model = RwkvForCausalLM(config)
|
||||
model.to(torch_device)
|
||||
if gradient_checkpointing:
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
result = model(input_ids, labels=input_ids)
|
||||
self.parent.assertEqual(result.loss.shape, ())
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
result.loss.backward()
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
||||
|
@ -147,32 +147,6 @@ class SEWModelTester:
|
||||
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
|
||||
)
|
||||
|
||||
def create_and_check_batch_inference(self, config, input_values, *args):
|
||||
# test does not pass for models making use of `group_norm`
|
||||
# check: https://github.com/pytorch/fairseq/issues/3227
|
||||
model = SEWModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
input_values = input_values[:3]
|
||||
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
|
||||
|
||||
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
||||
|
||||
# pad input
|
||||
for i in range(len(input_lengths)):
|
||||
input_values[i, input_lengths[i] :] = 0.0
|
||||
attention_mask[i, input_lengths[i] :] = 0.0
|
||||
|
||||
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
|
||||
|
||||
for i in range(input_values.shape[0]):
|
||||
input_slice = input_values[i : i + 1, : input_lengths[i]]
|
||||
output = model(input_slice).last_hidden_state
|
||||
|
||||
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
|
||||
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
|
||||
|
||||
def check_ctc_loss(self, config, input_values, *args):
|
||||
model = SEWForCTC(config=config)
|
||||
model.to(torch_device)
|
||||
|
@ -168,32 +168,6 @@ class SEWDModelTester:
|
||||
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
|
||||
)
|
||||
|
||||
def create_and_check_batch_inference(self, config, input_values, *args):
|
||||
# test does not pass for models making use of `group_norm`
|
||||
# check: https://github.com/pytorch/fairseq/issues/3227
|
||||
model = SEWDModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
input_values = input_values[:3]
|
||||
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
|
||||
|
||||
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
||||
|
||||
# pad input
|
||||
for i in range(len(input_lengths)):
|
||||
input_values[i, input_lengths[i] :] = 0.0
|
||||
attention_mask[i, input_lengths[i] :] = 0.0
|
||||
|
||||
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
|
||||
|
||||
for i in range(input_values.shape[0]):
|
||||
input_slice = input_values[i : i + 1, : input_lengths[i]]
|
||||
output = model(input_slice).last_hidden_state
|
||||
|
||||
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
|
||||
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
|
||||
|
||||
def check_ctc_loss(self, config, input_values, *args):
|
||||
model = SEWDForCTC(config=config)
|
||||
model.to(torch_device)
|
||||
|
@ -153,116 +153,6 @@ class StableLmModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = StableLmModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = StableLmForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = StableLmForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
(
|
||||
|
@ -157,119 +157,6 @@ class Starcoder2ModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Starcoder2
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = Starcoder2Model(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Starcoder2
|
||||
def create_and_check_for_causal_lm(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
model = Starcoder2ForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
|
||||
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Starcoder2
|
||||
def create_and_check_decoder_model_past_large_inputs(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.is_decoder = True
|
||||
config.add_cross_attention = True
|
||||
model = Starcoder2ForCausalLM(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
# first forward pass
|
||||
outputs = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=True,
|
||||
)
|
||||
past_key_values = outputs.past_key_values
|
||||
|
||||
# create hypothetical multiple next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
|
||||
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
|
||||
|
||||
output_from_no_past = model(
|
||||
next_input_ids,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
output_from_past = model(
|
||||
next_tokens,
|
||||
attention_mask=next_attention_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
output_hidden_states=True,
|
||||
)["hidden_states"][0]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
|
||||
|
||||
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
|
@ -27,8 +27,6 @@ from ...test_modeling_common import ModelTesterMixin, floats_tensor
|
||||
|
||||
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
from transformers import TimmBackbone, TimmBackboneConfig
|
||||
|
||||
from ...test_pipeline_mixin import PipelineTesterMixin
|
||||
@ -76,17 +74,6 @@ class TimmBackboneModelTester:
|
||||
backbone=self.backbone,
|
||||
)
|
||||
|
||||
def create_and_check_model(self, config, pixel_values):
|
||||
model = TimmBackbone(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
result = model(pixel_values)
|
||||
self.parent.assertEqual(
|
||||
result.feature_map[-1].shape,
|
||||
(self.batch_size, model.channels[-1], 14, 14),
|
||||
)
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, pixel_values = config_and_inputs
|
||||
|
@ -75,17 +75,6 @@ class TimmWrapperModelTester:
|
||||
def get_config(self):
|
||||
return TimmWrapperConfig.from_pretrained(self.model_name)
|
||||
|
||||
def create_and_check_model(self, config, pixel_values):
|
||||
model = TimmWrapperModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
result = model(pixel_values)
|
||||
self.parent.assertEqual(
|
||||
result.feature_map[-1].shape,
|
||||
(self.batch_size, model.channels[-1], 14, 14),
|
||||
)
|
||||
|
||||
def prepare_config_and_inputs_for_common(self):
|
||||
config_and_inputs = self.prepare_config_and_inputs()
|
||||
config, pixel_values = config_and_inputs
|
||||
|
@ -229,43 +229,6 @@ class UMT5ModelTester:
|
||||
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
|
||||
self.parent.assertEqual(len(decoder_past[0]), 4)
|
||||
|
||||
def create_and_check_decoder_model_past(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
decoder_input_ids,
|
||||
attention_mask,
|
||||
decoder_attention_mask,
|
||||
lm_labels,
|
||||
):
|
||||
model = UMT5Model(config=config).get_decoder().to(torch_device).eval()
|
||||
# first forward pass
|
||||
outputs = model(input_ids, use_cache=True)
|
||||
outputs_use_cache_conf = model(input_ids)
|
||||
outputs_no_past = model(input_ids, use_cache=False)
|
||||
|
||||
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
|
||||
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
|
||||
|
||||
output, past_key_values = outputs.to_tuple()
|
||||
|
||||
# create hypothetical next token and extent to next_input_ids
|
||||
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
|
||||
|
||||
# append to next input_ids and
|
||||
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
||||
|
||||
output_from_no_past = model(next_input_ids)["last_hidden_state"]
|
||||
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
|
||||
|
||||
# select random slice
|
||||
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
|
||||
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
|
||||
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
|
||||
|
||||
# test that outputs are equal for slice
|
||||
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
|
||||
|
||||
def create_and_check_model_fp16_forward(
|
||||
self,
|
||||
config,
|
||||
|
@ -246,32 +246,6 @@ class Wav2Vec2BertModelTester:
|
||||
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
|
||||
)
|
||||
|
||||
def create_and_check_batch_inference(self, config, input_features, *args):
|
||||
# test does not pass for models making use of `group_norm`
|
||||
# check: https://github.com/pytorch/fairseq/issues/3227
|
||||
model = Wav2Vec2BertModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
input_features = input_features[:3]
|
||||
attention_mask = torch.ones(input_features.shape, device=torch_device, dtype=torch.bool)
|
||||
|
||||
input_lengths = [input_features.shape[-1] // i for i in [4, 2, 1]]
|
||||
|
||||
# pad input
|
||||
for i in range(len(input_lengths)):
|
||||
input_features[i, input_lengths[i] :] = 0.0
|
||||
attention_mask[i, input_lengths[i] :] = 0.0
|
||||
|
||||
batch_outputs = model(input_features, attention_mask=attention_mask).last_hidden_state
|
||||
|
||||
for i in range(input_features.shape[0]):
|
||||
input_slice = input_features[i : i + 1, : input_lengths[i]]
|
||||
output = model(input_slice).last_hidden_state
|
||||
|
||||
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
|
||||
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
|
||||
|
||||
def check_ctc_loss(self, config, input_features, *args):
|
||||
model = Wav2Vec2BertForCTC(config=config)
|
||||
model.to(torch_device)
|
||||
|
@ -240,32 +240,6 @@ class Wav2Vec2ConformerModelTester:
|
||||
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
|
||||
)
|
||||
|
||||
def create_and_check_batch_inference(self, config, input_values, *args):
|
||||
# test does not pass for models making use of `group_norm`
|
||||
# check: https://github.com/pytorch/fairseq/issues/3227
|
||||
model = Wav2Vec2ConformerModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
input_values = input_values[:3]
|
||||
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
|
||||
|
||||
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
||||
|
||||
# pad input
|
||||
for i in range(len(input_lengths)):
|
||||
input_values[i, input_lengths[i] :] = 0.0
|
||||
attention_mask[i, input_lengths[i] :] = 0.0
|
||||
|
||||
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
|
||||
|
||||
for i in range(input_values.shape[0]):
|
||||
input_slice = input_values[i : i + 1, : input_lengths[i]]
|
||||
output = model(input_slice).last_hidden_state
|
||||
|
||||
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
|
||||
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
|
||||
|
||||
def check_ctc_loss(self, config, input_values, *args):
|
||||
model = Wav2Vec2ConformerForCTC(config=config)
|
||||
model.to(torch_device)
|
||||
|
@ -157,32 +157,6 @@ class WavLMModelTester:
|
||||
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
|
||||
)
|
||||
|
||||
def create_and_check_batch_inference(self, config, input_values, *args):
|
||||
# test does not pass for models making use of `group_norm`
|
||||
# check: https://github.com/pytorch/fairseq/issues/3227
|
||||
model = WavLMModel(config=config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
|
||||
input_values = input_values[:3]
|
||||
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
|
||||
|
||||
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
|
||||
|
||||
# pad input
|
||||
for i in range(len(input_lengths)):
|
||||
input_values[i, input_lengths[i] :] = 0.0
|
||||
attention_mask[i, input_lengths[i] :] = 0.0
|
||||
|
||||
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
|
||||
|
||||
for i in range(input_values.shape[0]):
|
||||
input_slice = input_values[i : i + 1, : input_lengths[i]]
|
||||
output = model(input_slice).last_hidden_state
|
||||
|
||||
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
|
||||
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
|
||||
|
||||
def check_ctc_loss(self, config, input_values, *args):
|
||||
model = WavLMForCTC(config=config)
|
||||
model.to(torch_device)
|
||||
|
@ -168,38 +168,6 @@ class YosoModelTester:
|
||||
result = model(input_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_model_as_decoder(
|
||||
self,
|
||||
config,
|
||||
input_ids,
|
||||
token_type_ids,
|
||||
input_mask,
|
||||
sequence_labels,
|
||||
token_labels,
|
||||
choice_labels,
|
||||
encoder_hidden_states,
|
||||
encoder_attention_mask,
|
||||
):
|
||||
config.add_cross_attention = True
|
||||
model = YosoModel(config)
|
||||
model.to(torch_device)
|
||||
model.eval()
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
)
|
||||
result = model(
|
||||
input_ids,
|
||||
attention_mask=input_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
)
|
||||
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
||||
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
||||
|
||||
def create_and_check_for_masked_lm(
|
||||
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
||||
):
|
||||
|
Loading…
Reference in New Issue
Block a user