transformers/docs/source/en/model_doc/efficientformer.md
Steven Liu c0f8d055ce
[docs] Redesign (#31757)
* toctree

* not-doctested.txt

* collapse sections

* feedback

* update

* rewrite get started sections

* fixes

* fix

* loading models

* fix

* customize models

* share

* fix link

* contribute part 1

* contribute pt 2

* fix toctree

* tokenization pt 1

* Add new model (#32615)

* v1 - working version

* fix

* fix

* fix

* fix

* rename to correct name

* fix title

* fixup

* rename files

* fix

* add copied from on tests

* rename to `FalconMamba` everywhere and fix bugs

* fix quantization + accelerate

* fix copies

* add `torch.compile` support

* fix tests

* fix tests and add slow tests

* copies on config

* merge the latest changes

* fix tests

* add few lines about instruct

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix

* fix tests

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* "to be not" -> "not to be" (#32636)

* "to be not" -> "not to be"

* Update sam.md

* Update trainer.py

* Update modeling_utils.py

* Update test_modeling_utils.py

* Update test_modeling_utils.py

* fix hfoption tag

* tokenization pt. 2

* image processor

* fix toctree

* backbones

* feature extractor

* fix file name

* processor

* update not-doctested

* update

* make style

* fix toctree

* revision

* make fixup

* fix toctree

* fix

* make style

* fix hfoption tag

* pipeline

* pipeline gradio

* pipeline web server

* add pipeline

* fix toctree

* not-doctested

* prompting

* llm optims

* fix toctree

* fixes

* cache

* text generation

* fix

* chat pipeline

* chat stuff

* xla

* torch.compile

* cpu inference

* toctree

* gpu inference

* agents and tools

* gguf/tiktoken

* finetune

* toctree

* trainer

* trainer pt 2

* optims

* optimizers

* accelerate

* parallelism

* fsdp

* update

* distributed cpu

* hardware training

* gpu training

* gpu training 2

* peft

* distrib debug

* deepspeed 1

* deepspeed 2

* chat toctree

* quant pt 1

* quant pt 2

* fix toctree

* fix

* fix

* quant pt 3

* quant pt 4

* serialization

* torchscript

* scripts

* tpu

* review

* model addition timeline

* modular

* more reviews

* reviews

* fix toctree

* reviews reviews

* continue reviews

* more reviews

* modular transformers

* more review

* zamba2

* fix

* all frameworks

* pytorch

* supported model frameworks

* flashattention

* rm check_table

* not-doctested.txt

* rm check_support_list.py

* feedback

* updates/feedback

* review

* feedback

* fix

* update

* feedback

* updates

* update

---------

Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2025-03-03 10:33:46 -08:00

4.7 KiB
Raw Blame History

EfficientFormer

PyTorch TensorFlow

This model is in maintenance mode only, we don't accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2. You can do so by running the following command: pip install -U transformers==4.40.2.

Overview

The EfficientFormer model was proposed in EfficientFormer: Vision Transformers at MobileNet Speed by Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren. EfficientFormer proposes a dimension-consistent pure transformer that can be run on mobile devices for dense prediction tasks like image classification, object detection and semantic segmentation.

The abstract from the paper is the following:

Vision Transformers (ViT) have shown rapid progress in computer vision tasks, achieving promising results on various benchmarks. However, due to the massive number of parameters and model design, e.g., attention mechanism, ViT-based models are generally times slower than lightweight convolutional networks. Therefore, the deployment of ViT for real-time applications is particularly challenging, especially on resource-constrained hardware such as mobile devices. Recent efforts try to reduce the computation complexity of ViT through network architecture search or hybrid design with MobileNet block, yet the inference speed is still unsatisfactory. This leads to an important question: can transformers run as fast as MobileNet while obtaining high performance? To answer this, we first revisit the network architecture and operators used in ViT-based models and identify inefficient designs. Then we introduce a dimension-consistent pure transformer (without MobileNet blocks) as a design paradigm. Finally, we perform latency-driven slimming to get a series of final models dubbed EfficientFormer. Extensive experiments show the superiority of EfficientFormer in performance and speed on mobile devices. Our fastest model, EfficientFormer-L1, achieves 79.2% top-1 accuracy on ImageNet-1K with only 1.6 ms inference latency on iPhone 12 (compiled with CoreML), which { runs as fast as MobileNetV2×1.4 (1.6 ms, 74.7% top-1),} and our largest model, EfficientFormer-L7, obtains 83.3% accuracy with only 7.0 ms latency. Our work proves that properly designed transformers can reach extremely low latency on mobile devices while maintaining high performance.

This model was contributed by novice03 and Bearnardd. The original code can be found here. The TensorFlow version of this model was added by D-Roberts.

Documentation resources

EfficientFormerConfig

autodoc EfficientFormerConfig

EfficientFormerImageProcessor

autodoc EfficientFormerImageProcessor - preprocess

EfficientFormerModel

autodoc EfficientFormerModel - forward

EfficientFormerForImageClassification

autodoc EfficientFormerForImageClassification - forward

EfficientFormerForImageClassificationWithTeacher

autodoc EfficientFormerForImageClassificationWithTeacher - forward

TFEfficientFormerModel

autodoc TFEfficientFormerModel - call

TFEfficientFormerForImageClassification

autodoc TFEfficientFormerForImageClassification - call

TFEfficientFormerForImageClassificationWithTeacher

autodoc TFEfficientFormerForImageClassificationWithTeacher - call