transformers/tests/tensor_parallel/test_tensor_parallel.py
jiqing-feng 286393fbb1
enable tp on CPU (#36299)
* enable tp on CPU

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* get rank from cpu

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* enable TP tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix comment

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* em print

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix model id

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix conflict

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix index and add doc

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
2025-03-31 10:55:47 +02:00

95 lines
3.3 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import subprocess
import tempfile
import textwrap
from transformers import is_torch_available
from transformers.testing_utils import (
TestCasePlus,
get_torch_dist_unique_port,
require_torch_multi_gpu,
)
if is_torch_available():
import torch
# RUN_SLOW=1 pytest -sv tests/tensor_parallel/test_tensor_parallel.py
class TestTensorParallel(TestCasePlus):
nproc_per_node = 2
def torchrun(self, script: str):
"""Run the `script` using `torchrun` command for multi-processing in a subprocess. Captures errors as necessary."""
with tempfile.NamedTemporaryFile(mode="w+", suffix=".py") as tmp:
tmp.write(script)
tmp.flush()
tmp.seek(0)
cmd = (
f"torchrun --nproc_per_node {self.nproc_per_node} --master_port {get_torch_dist_unique_port()} {tmp.name}"
).split()
# Note that the subprocess will be waited for here, and raise an error if not successful
try:
_ = subprocess.run(cmd, capture_output=True, env=self.get_env(), text=True, check=True)
except subprocess.CalledProcessError as e:
raise Exception(f"The following error was captured: {e.stderr}")
def test_model_forward(self):
script_to_run = textwrap.dedent(
"""
import torch
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "JackFram/llama-68m"
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", tp_plan="auto")
torch.distributed.barrier()
has_dtensor = 0
for name, parameter in model.named_parameters():
if isinstance(parameter.data, torch.distributed.tensor.DTensor):
has_dtensor = 1
break
assert has_dtensor == 1, "TP model must has DTensor"
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Can I help"
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
outputs = model(inputs)
next_token_logits = outputs[0][:, -1, :]
next_token = torch.argmax(next_token_logits, dim=-1)
response = tokenizer.decode(next_token)
assert response == "with"
torch.distributed.barrier()
torch.distributed.destroy_process_group()
"""
)
self.torchrun(script_to_run)
@require_torch_multi_gpu
class TestTensorParallelCuda(TestTensorParallel):
nproc_per_node = torch.cuda.device_count()