
* toctree * not-doctested.txt * collapse sections * feedback * update * rewrite get started sections * fixes * fix * loading models * fix * customize models * share * fix link * contribute part 1 * contribute pt 2 * fix toctree * tokenization pt 1 * Add new model (#32615) * v1 - working version * fix * fix * fix * fix * rename to correct name * fix title * fixup * rename files * fix * add copied from on tests * rename to `FalconMamba` everywhere and fix bugs * fix quantization + accelerate * fix copies * add `torch.compile` support * fix tests * fix tests and add slow tests * copies on config * merge the latest changes * fix tests * add few lines about instruct * Apply suggestions from code review Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * fix tests --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * "to be not" -> "not to be" (#32636) * "to be not" -> "not to be" * Update sam.md * Update trainer.py * Update modeling_utils.py * Update test_modeling_utils.py * Update test_modeling_utils.py * fix hfoption tag * tokenization pt. 2 * image processor * fix toctree * backbones * feature extractor * fix file name * processor * update not-doctested * update * make style * fix toctree * revision * make fixup * fix toctree * fix * make style * fix hfoption tag * pipeline * pipeline gradio * pipeline web server * add pipeline * fix toctree * not-doctested * prompting * llm optims * fix toctree * fixes * cache * text generation * fix * chat pipeline * chat stuff * xla * torch.compile * cpu inference * toctree * gpu inference * agents and tools * gguf/tiktoken * finetune * toctree * trainer * trainer pt 2 * optims * optimizers * accelerate * parallelism * fsdp * update * distributed cpu * hardware training * gpu training * gpu training 2 * peft * distrib debug * deepspeed 1 * deepspeed 2 * chat toctree * quant pt 1 * quant pt 2 * fix toctree * fix * fix * quant pt 3 * quant pt 4 * serialization * torchscript * scripts * tpu * review * model addition timeline * modular * more reviews * reviews * fix toctree * reviews reviews * continue reviews * more reviews * modular transformers * more review * zamba2 * fix * all frameworks * pytorch * supported model frameworks * flashattention * rm check_table * not-doctested.txt * rm check_support_list.py * feedback * updates/feedback * review * feedback * fix * update * feedback * updates * update --------- Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
5.3 KiB
ONNX
ONNX is an open standard that defines a common set of operators and a file format to represent deep learning models in different frameworks, including PyTorch and TensorFlow. When a model is exported to ONNX, the operators construct a computational graph (or intermediate representation) which represents the flow of data through the model. Standardized operators and data types makes it easy to switch between frameworks.
The Optimum library exports a model to ONNX with configuration objects which are supported for many architectures and can be easily extended. If a model isn't supported, feel free to make a contribution to Optimum.
The benefits of exporting to ONNX include the following.
- Graph optimization and quantization for improving inference.
- Use the [
~optimum.onnxruntime.ORTModel
] API to run a model with ONNX Runtime. - Use optimized inference pipelines for ONNX models.
Export a Transformers model to ONNX with the Optimum CLI or the optimum.onnxruntime
module.
Optimum CLI
Run the command below to install Optimum and the exporters module.
pip install optimum[exporters]
Tip
Refer to the Export a model to ONNX with optimum.exporters.onnx guide for all available arguments or with the command below.
optimum-cli export onnx --help
Set the --model
argument to export a PyTorch or TensorFlow model from the Hub.
optimum-cli export onnx --model distilbert/distilbert-base-uncased-distilled-squad distilbert_base_uncased_squad_onnx/
You should see logs indicating the progress and showing where the resulting model.onnx
is saved.
Validating ONNX model distilbert_base_uncased_squad_onnx/model.onnx...
-[✓] ONNX model output names match reference model (start_logits, end_logits)
- Validating ONNX Model output "start_logits":
-[✓] (2, 16) matches (2, 16)
-[✓] all values close (atol: 0.0001)
- Validating ONNX Model output "end_logits":
-[✓] (2, 16) matches (2, 16)
-[✓] all values close (atol: 0.0001)
The ONNX export succeeded and the exported model was saved at: distilbert_base_uncased_squad_onnx
For local models, make sure the model weights and tokenizer files are saved in the same directory, for example local_path
. Pass the directory to the --model
argument and use --task
to indicate the task a model can perform. If --task
isn't provided, the model architecture without a task-specific head is used.
optimum-cli export onnx --model local_path --task question-answering distilbert_base_uncased_squad_onnx/
The model.onnx
file can be deployed with any accelerator that supports ONNX. The example below demonstrates loading and running a model with ONNX Runtime.
>>> from transformers import AutoTokenizer
>>> from optimum.onnxruntime import ORTModelForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert_base_uncased_squad_onnx")
>>> model = ORTModelForQuestionAnswering.from_pretrained("distilbert_base_uncased_squad_onnx")
>>> inputs = tokenizer("What am I using?", "Using DistilBERT with ONNX Runtime!", return_tensors="pt")
>>> outputs = model(**inputs)
optimum.onnxruntime
The optimum.onnxruntime
module supports programmatically exporting a Transformers model. Instantiate a [~optimum.onnxruntime.ORTModel
] for a task and set export=True
. Use [~OptimizedModel.save_pretrained
] to save the ONNX model.
>>> from optimum.onnxruntime import ORTModelForSequenceClassification
>>> from transformers import AutoTokenizer
>>> model_checkpoint = "distilbert/distilbert-base-uncased-distilled-squad"
>>> save_directory = "onnx/"
>>> ort_model = ORTModelForSequenceClassification.from_pretrained(model_checkpoint, export=True)
>>> tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
>>> ort_model.save_pretrained(save_directory)
>>> tokenizer.save_pretrained(save_directory)