transformers/docs/source/ko/model_doc/swin2sr.md
Jiwook Han 1ecca92f03
🌐 [i18n-KO] Translated swin2sr.md to Korean (#33795)
* ko: doc: model_doc/swin2sr.md

* feat: nmt draft

* Update docs/source/ko/model_doc/swin2sr.md

Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>

---------

Co-authored-by: Yijun Lee <119404328+yijun-lee@users.noreply.github.com>
2024-10-07 15:34:56 -07:00

4.1 KiB

Swin2SR swin2sr

개요 overview

Swin2SR 모델은 Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte가 제안한 논문 Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration에서 소개되었습니다. Swin2SR은 SwinIR 모델을 개선하고자 Swin Transformer v2 레이어를 도입함으로써, 훈련 불안정성, 사전 훈련과 미세 조정 간의 해상도 차이, 그리고 데이터 의존성 문제를 완화시킵니다.

논문의 초록은 다음과 같습니다:

압축은 스트리밍 서비스, 가상 현실, 비디오 게임과 같은 대역폭이 제한된 시스템을 통해 이미지와 영상을 효율적으로 전송하고 저장하는 데 중요한 역할을 합니다. 하지만 압축은 필연적으로 원본 정보의 손실과 아티팩트를 초래하며, 이는 시각적 품질을 심각하게 저하시킬 수 있습니다. 이러한 이유로, 압축된 이미지의 품질 향상은 활발한 연구 주제가 되고 있습니다. 현재 대부분의 최첨단 이미지 복원 방법은 합성곱 신경망을 기반으로 하지만, SwinIR과 같은 트랜스포머 기반 방법들도 이 작업에서 인상적인 성능을 보여주고 있습니다. 이번 논문에서는 Swin Transformer V2를 사용해 SwinIR을 개선하여 이미지 초해상도 작업, 특히 압축된 입력 시나리오에서 성능을 향상시키고자 합니다. 이 방법을 통해 트랜스포머 비전 모델을 훈련할 때 발생하는 주요 문제들, 예를 들어 훈련 불안정성, 사전 훈련과 미세 조정 간 해상도 차이, 그리고 데이터 의존성을 해결할 수 있습니다. 우리는 JPEG 압축 아티팩트 제거, 이미지 초해상도(클래식 및 경량), 그리고 압축된 이미지 초해상도라는 세 가지 대표적인 작업에서 실험을 수행했습니다. 실험 결과, 우리의 방법인 Swin2SR은 SwinIR의 훈련 수렴성과 성능을 향상시킬 수 있으며, "AIM 2022 Challenge on Super-Resolution of Compressed Image and Video"에서 상위 5위 솔루션으로 선정되었습니다.

drawing

Swin2SR 아키텍처. 원본 논문에서 발췌.

이 모델은 nielsr가 기여하였습니다. 원본 코드는 여기에서 확인할 수 있습니다.

리소스 resources

Swin2SR demo notebook은 여기에서 확인할 수 있습니다.

SwinSR을 활용한 image super-resolution demo space는 여기에서 확인할 수 있습니다.

Swin2SRImageProcessor transformers.Swin2SRImageProcessor

autodoc Swin2SRImageProcessor - preprocess

Swin2SRConfig transformers.Swin2SRConfig

autodoc Swin2SRConfig

Swin2SRModel transformers.Swin2SRModel

autodoc Swin2SRModel - forward

Swin2SRForImageSuperResolution transformers.Swin2SRForImageSuperResolution

autodoc Swin2SRForImageSuperResolution - forward