
* toctree * not-doctested.txt * collapse sections * feedback * update * rewrite get started sections * fixes * fix * loading models * fix * customize models * share * fix link * contribute part 1 * contribute pt 2 * fix toctree * tokenization pt 1 * Add new model (#32615) * v1 - working version * fix * fix * fix * fix * rename to correct name * fix title * fixup * rename files * fix * add copied from on tests * rename to `FalconMamba` everywhere and fix bugs * fix quantization + accelerate * fix copies * add `torch.compile` support * fix tests * fix tests and add slow tests * copies on config * merge the latest changes * fix tests * add few lines about instruct * Apply suggestions from code review Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * fix tests --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * "to be not" -> "not to be" (#32636) * "to be not" -> "not to be" * Update sam.md * Update trainer.py * Update modeling_utils.py * Update test_modeling_utils.py * Update test_modeling_utils.py * fix hfoption tag * tokenization pt. 2 * image processor * fix toctree * backbones * feature extractor * fix file name * processor * update not-doctested * update * make style * fix toctree * revision * make fixup * fix toctree * fix * make style * fix hfoption tag * pipeline * pipeline gradio * pipeline web server * add pipeline * fix toctree * not-doctested * prompting * llm optims * fix toctree * fixes * cache * text generation * fix * chat pipeline * chat stuff * xla * torch.compile * cpu inference * toctree * gpu inference * agents and tools * gguf/tiktoken * finetune * toctree * trainer * trainer pt 2 * optims * optimizers * accelerate * parallelism * fsdp * update * distributed cpu * hardware training * gpu training * gpu training 2 * peft * distrib debug * deepspeed 1 * deepspeed 2 * chat toctree * quant pt 1 * quant pt 2 * fix toctree * fix * fix * quant pt 3 * quant pt 4 * serialization * torchscript * scripts * tpu * review * model addition timeline * modular * more reviews * reviews * fix toctree * reviews reviews * continue reviews * more reviews * modular transformers * more review * zamba2 * fix * all frameworks * pytorch * supported model frameworks * flashattention * rm check_table * not-doctested.txt * rm check_support_list.py * feedback * updates/feedback * review * feedback * fix * update * feedback * updates * update --------- Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
3.5 KiB
CPU
A modern CPU is capable of efficiently training large models by leveraging the underlying optimizations built into the hardware and training on fp16 or bf16 data types.
This guide focuses on how to train large models on an Intel CPU using mixed precision and the Intel Extension for PyTorch (IPEX) library.
You can Find your PyTorch version by running the command below.
pip list | grep torch
Install IPEX with the PyTorch version from above.
pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
Tip
Refer to the IPEX installation guide for more details.
IPEX provides additional performance optimizations for Intel CPUs. These include additional CPU instruction level architecture (ISA) support such as Intel AVX512-VNNI and Intel AMX. Both of these features are designed to accelerate matrix multiplication. Older AMD and Intel CPUs with only Intel AVX2, however, aren't guaranteed better performance with IPEX.
IPEX also supports Auto Mixed Precision (AMP) training with the fp16 and bf16 data types. Reducing precision speeds up training and reduces memory usage because it requires less computation. The loss in accuracy from using full-precision is minimal. 3rd, 4th, and 5th generation Intel Xeon Scalable processors natively support bf16, and the 6th generation processor also natively supports fp16 in addition to bf16.
AMP is enabled for CPU backends training with PyTorch.
[Trainer
] supports AMP training with a CPU by adding the --use_cpu
, --use_ipex
, and --bf16
parameters. The example below demonstrates the run_qa.py script.
python run_qa.py \
--model_name_or_path google-bert/bert-base-uncased \
--dataset_name squad \
--do_train \
--do_eval \
--per_device_train_batch_size 12 \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--output_dir /tmp/debug_squad/ \
--use_ipex \
--bf16 \
--use_cpu
These parameters can also be added to [TrainingArguments
] as shown below.
training_args = TrainingArguments(
output_dir="./outputs",
bf16=True,
use_ipex=True,
use_cpu=True,
)
Resources
Learn more about training on Intel CPUs in the Accelerating PyTorch Transformers with Intel Sapphire Rapids blog post.