
* edit siglip model card * fix syntax * Update docs/source/en/model_doc/siglip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/siglip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/siglip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/siglip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/siglip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * Update docs/source/en/model_doc/siglip.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> * address comments --------- Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
6.7 KiB
SigLIP
SigLIP is a multimodal image-text model similar to CLIP. It uses separate image and text encoders to generate representations for both modalities.
Unlike CLIP, SigLIP employs a pairwise sigmoid loss on image-text pairs during training. This training loss eliminates the need for a global view of all pairwise similarities between images and texts within a batch. Consequently, it enables more efficient scaling to larger batch sizes while also delivering superior performance with smaller batch sizes.
You can find all the original SigLIP checkpoints under the SigLIP collection.
Tip
Click on the SigLIP models in the right sidebar for more examples of how to apply SigLIP to different image and text tasks.
The example below demonstrates how to generate similarity scores between texts and image(s) with [Pipeline
] or the [AutoModel
] class.
import torch
from transformers import pipeline
image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
pipeline = pipeline(task="zero-shot-image-classification", model="google/siglip-base-patch16-224", device=0, torch_dtype=torch.bfloat16)
pipeline(image, candidate_labels=candidate_labels)
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel
model = AutoModel.from_pretrained("google/siglip-base-patch16-224", torch_dtype=torch.float16, device_map="auto", attn_implementation="sdpa")
processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
texts = [f'This is a photo of {label}.' for label in candidate_labels]
inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image)
print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses bitsandbytes to only quantize the weights to int4.
import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel, BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModel.from_pretrained("google/siglip-base-patch16-224", quantization_config=bnb_config, device_map="auto", attn_implementation="sdpa")
processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]
texts = [f'This is a photo of {label}.' for label in candidate_labels]
inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image)
print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")
Notes
- Training is supported for DDP and FSDP on single-node multi-GPU setups. However, it does not use torch.distributed utilities which may limit the scalability of batch size.
- When using the standalone [
SiglipTokenizer
] or [SiglipProcessor
], make sure to passpadding="max_length"
because that is how the model was trained. - To get the same results as the [
Pipeline
], a prompt template of"This is a photo of {label}."
should be passed to the processor. - Toggle the
attn_implementation
parameter to either"sdpa"
or"flash_attention_2"
to use a more memory-efficient attention.# pip install -U flash-attn --no-build-isolation from transformers import SiglipModel model = SiglipModel.from_pretrained( "google/siglip-so400m-patch14-384", attn_implementation="flash_attention_2", torch_dtype=torch.float16, device_map=device, )
SiglipConfig
autodoc SiglipConfig - from_text_vision_configs
SiglipTextConfig
autodoc SiglipTextConfig
SiglipVisionConfig
autodoc SiglipVisionConfig
SiglipTokenizer
autodoc SiglipTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary
SiglipImageProcessor
autodoc SiglipImageProcessor - preprocess
SiglipImageProcessorFast
autodoc SiglipImageProcessorFast - preprocess
SiglipProcessor
autodoc SiglipProcessor
SiglipModel
autodoc SiglipModel - forward - get_text_features - get_image_features
SiglipTextModel
autodoc SiglipTextModel - forward
SiglipVisionModel
autodoc SiglipVisionModel - forward
SiglipForImageClassification
autodoc SiglipForImageClassification - forward