
* toctree * not-doctested.txt * collapse sections * feedback * update * rewrite get started sections * fixes * fix * loading models * fix * customize models * share * fix link * contribute part 1 * contribute pt 2 * fix toctree * tokenization pt 1 * Add new model (#32615) * v1 - working version * fix * fix * fix * fix * rename to correct name * fix title * fixup * rename files * fix * add copied from on tests * rename to `FalconMamba` everywhere and fix bugs * fix quantization + accelerate * fix copies * add `torch.compile` support * fix tests * fix tests and add slow tests * copies on config * merge the latest changes * fix tests * add few lines about instruct * Apply suggestions from code review Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * fix * fix tests --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * "to be not" -> "not to be" (#32636) * "to be not" -> "not to be" * Update sam.md * Update trainer.py * Update modeling_utils.py * Update test_modeling_utils.py * Update test_modeling_utils.py * fix hfoption tag * tokenization pt. 2 * image processor * fix toctree * backbones * feature extractor * fix file name * processor * update not-doctested * update * make style * fix toctree * revision * make fixup * fix toctree * fix * make style * fix hfoption tag * pipeline * pipeline gradio * pipeline web server * add pipeline * fix toctree * not-doctested * prompting * llm optims * fix toctree * fixes * cache * text generation * fix * chat pipeline * chat stuff * xla * torch.compile * cpu inference * toctree * gpu inference * agents and tools * gguf/tiktoken * finetune * toctree * trainer * trainer pt 2 * optims * optimizers * accelerate * parallelism * fsdp * update * distributed cpu * hardware training * gpu training * gpu training 2 * peft * distrib debug * deepspeed 1 * deepspeed 2 * chat toctree * quant pt 1 * quant pt 2 * fix toctree * fix * fix * quant pt 3 * quant pt 4 * serialization * torchscript * scripts * tpu * review * model addition timeline * modular * more reviews * reviews * fix toctree * reviews reviews * continue reviews * more reviews * modular transformers * more review * zamba2 * fix * all frameworks * pytorch * supported model frameworks * flashattention * rm check_table * not-doctested.txt * rm check_support_list.py * feedback * updates/feedback * review * feedback * fix * update * feedback * updates * update --------- Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
5.8 KiB
Nemotron
License
The use of this model is governed by the NVIDIA AI Foundation Models Community License Agreement.
Description
Nemotron-4 is a family of enterprise ready generative text models compatible with NVIDIA NeMo Framework.
NVIDIA NeMo is an end-to-end, cloud-native platform to build, customize, and deploy generative AI models anywhere. It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models, offering enterprises an easy, cost-effective, and fast way to adopt generative AI. To get access to NeMo Framework, please sign up at this link.
References
Model Architecture
Architecture Type: Transformer
Network Architecture: Transformer Decoder (auto-regressive language model).
Minitron
Minitron 4B Base
Minitron is a family of small language models (SLMs) obtained by pruning NVIDIA's Nemotron-4 15B model. We prune model embedding size, attention heads, and MLP intermediate dimension, following which, we perform continued training with distillation to arrive at the final models.
Deriving the Minitron 8B and 4B models from the base 15B model using our approach requires up to 40x fewer training tokens per model compared to training from scratch; this results in compute cost savings of 1.8x for training the full model family (15B, 8B, and 4B). Minitron models exhibit up to a 16% improvement in MMLU scores compared to training from scratch, perform comparably to other community models such as Mistral 7B, Gemma 7B and Llama-3 8B, and outperform state-of-the-art compression techniques from the literature. Please refer to our arXiv paper for more details.
Minitron models are for research and development only.
HuggingFace Quickstart
The following code provides an example of how to load the Minitron-4B model and use it to perform text generation.
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
model_path = 'nvidia/Minitron-4B-Base'
tokenizer = AutoTokenizer.from_pretrained(model_path)
device = 'cuda'
dtype = torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
# Prepare the input text
prompt = 'Complete the paragraph: our solar system is'
inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device)
# Generate the output
outputs = model.generate(inputs, max_length=20)
# Decode and print the output
output_text = tokenizer.decode(outputs[0])
print(output_text)
License
Minitron is released under the NVIDIA Open Model License Agreement.
Evaluation Results
5-shot performance. Language Understanding evaluated using Massive Multitask Language Understanding:
Average |
---|
58.6 |
Zero-shot performance. Evaluated using select datasets from the LM Evaluation Harness with additions:
HellaSwag | Winogrande | GSM8K | ARC-C | XLSum |
---|---|---|---|---|
75.0 | 74.0 | 24.1 | 50.9 | 29.5 |
Code generation performance. Evaluated using HumanEval:
p@1, 0-Shot |
---|
23.3 |
Please refer to our paper for the full set of results.
Citation
If you find our work helpful, please consider citing our paper:
@article{minitron2024,
title={Compact Language Models via Pruning and Knowledge Distillation},
author={Saurav Muralidharan and Sharath Turuvekere Sreenivas and Raviraj Joshi and Marcin Chochowski and Mostofa Patwary and Mohammad Shoeybi and Bryan Catanzaro and Jan Kautz and Pavlo Molchanov},
journal={arXiv preprint arXiv:2407.14679},
year={2024},
url={https://arxiv.org/abs/2407.14679},
}
NemotronConfig
autodoc NemotronConfig
NemotronModel
autodoc NemotronModel - forward
NemotronForCausalLM
autodoc NemotronForCausalLM - forward
NemotronForSequenceClassification
autodoc NemotronForSequenceClassification - forward
NemotronForQuestionAnswering
autodoc NemotronForQuestionAnswering - forward
NemotronForTokenClassification
autodoc NemotronForTokenClassification - forward