9.8 KiB
Llama 2
Llama 2 is a family of large language models, Llama 2 and Llama 2-Chat, available in 7B, 13B, and 70B parameters. The Llama 2 model mostly keeps the same architecture as Llama, but it is pretrained on more tokens, doubles the context length, and uses grouped-query attention (GQA) in the 70B model to improve inference.
Llama 2-Chat is trained with supervised fine-tuning (SFT), and reinforcement learning with human feedback (RLHF) - rejection sampling and proximal policy optimization (PPO) - is applied to the fine-tuned model to align the chat model with human preferences.
You can find all the original Llama 2 checkpoints under the Llama 2 Family collection.
Tip
Click on the Llama 2 models in the right sidebar for more examples of how to apply Llama to different language tasks.
The example below demonstrates how to generate text with [Pipeline
], [AutoModel
], and how to chat with Llama 2-Chat from the command line.
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="meta-llama/Llama-2-7b-hf",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create energy through a process known as")
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"meta-llama/Llama-2-7b-hf",
)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
transformers-cli chat --model_name_or_path meta-llama/Llama-2-7b-chat-hf --torch_dtype auto --attn_implementation flash_attention_2
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.
The example below uses torchao to only quantize the weights to int4.
# pip install torchao
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-13b-hf",
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-13b-hf")
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
Use the AttentionMaskVisualizer to better understand what tokens the model can and cannot attend to.
from transformers.utils.attention_visualizer import AttentionMaskVisualizer
visualizer = AttentionMaskVisualizer("meta-llama/Llama-2-7b-hf")
visualizer("Plants create energy through a process known as")

Notes
-
Setting
config.pretraining_tp
to a value besides1
activates a more accurate but slower computation of the linear layers. This matches the original logits better. -
The original model uses
pad_id = -1
to indicate a padding token. The Transformers implementation requires adding a padding token and resizing the token embedding accordingly.tokenizer.add_special_tokens({"pad_token":"<pad>"}) # update model config with padding token model.config.pad_token_id
-
It is recommended to initialize the
embed_tokens
layer with the following code to ensure encoding the padding token outputs zeros.self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.config.padding_idx)
-
The tokenizer is a byte-pair encoding model based on SentencePiece. During decoding, if the first token is the start of the word (for example, "Banana"), the tokenizer doesn't prepend the prefix space to the string.
-
Don't use the
torch_dtype
parameter in [~AutoModel.from_pretrained
] if you're using FlashAttention-2 because it only supports fp16 or bf16. You should use Automatic Mixed Precision, set fp16 or bf16 toTrue
if using [Trainer
], or use torch.autocast.
LlamaConfig
autodoc LlamaConfig
LlamaTokenizer
autodoc LlamaTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary
LlamaTokenizerFast
autodoc LlamaTokenizerFast - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - update_post_processor - save_vocabulary
LlamaModel
autodoc LlamaModel - forward
LlamaForCausalLM
autodoc LlamaForCausalLM - forward
LlamaForSequenceClassification
autodoc LlamaForSequenceClassification - forward