mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-07 06:40:04 +06:00

* init smollm3 * integration tests * config quirks * docs stub * rests round 2 * tests round 3 * tests round 4 * bring SWA back * config checker pls * final checkpoint * style and copies * Update src/transformers/models/smollm3/modular_smollm3.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Update src/transformers/models/smollm3/modular_smollm3.py Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> --------- Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
174 lines
5.5 KiB
Markdown
174 lines
5.5 KiB
Markdown
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
<div style="float: right;">
|
|
<div class="flex flex-wrap space-x-1">
|
|
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
|
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
|
</div>
|
|
</div>
|
|
|
|
# SmolLM3
|
|
|
|
SmolLM3 is a fully open, compact language model designed for efficient deployment while maintaining strong performance. It uses a Transformer decoder architecture with Grouped Query Attention (GQA) to reduce the kv cache, and no RoPE, enabling improved performance on long-context tasks. It is trained using a multi-stage training approach on high-quality public datasets across web, code, and math domains. The model is multilingual and supports very large context lengths. The instruct variant is optimized for reasoning and tool use.
|
|
|
|
> [!TIP]
|
|
> Click on the SmolLM3 models in the right sidebar for more examples of how to apply SmolLM3 to different language tasks.
|
|
|
|
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line using the instruction-tuned models.
|
|
|
|
<hfoptions id="usage">
|
|
<hfoption id="Pipeline">
|
|
|
|
```python
|
|
import torch
|
|
from transformers import pipeline
|
|
|
|
pipe = pipeline(
|
|
task="text-generation",
|
|
model="HuggingFaceTB/SmolLM3-3B",
|
|
torch_dtype=torch.bfloat16,
|
|
device_map=0
|
|
)
|
|
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "Tell me about yourself."},
|
|
]
|
|
outputs = pipe(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
|
print(outputs[0]["generated_text"][-1]['content'])
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="AutoModel">
|
|
|
|
```python
|
|
import torch
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"HuggingFaceTB/SmolLM3-3B",
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
attn_implementation="sdpa"
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
|
|
|
|
prompt = "Give me a short introduction to large language models."
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": prompt}
|
|
]
|
|
text = tokenizer.apply_chat_template(
|
|
messages,
|
|
tokenize=False,
|
|
add_generation_prompt=True
|
|
)
|
|
model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
|
|
|
|
generated_ids = model.generate(
|
|
model_inputs.input_ids,
|
|
cache_implementation="static",
|
|
max_new_tokens=512,
|
|
do_sample=True,
|
|
temperature=0.7,
|
|
top_k=50,
|
|
top_p=0.95
|
|
)
|
|
generated_ids = [
|
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
]
|
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
print(response)
|
|
```
|
|
|
|
</hfoption>
|
|
<hfoption id="transformers CLI">
|
|
|
|
```bash
|
|
# pip install -U flash-attn --no-build-isolation
|
|
transformers chat HuggingFaceTB/SmolLM3-3B --torch_dtype auto --attn_implementation flash_attention_2 --device 0
|
|
```
|
|
|
|
</hfoption>
|
|
</hfoptions>
|
|
|
|
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
|
|
|
The example below uses [bitsandbytes](../quantization/bitsandbytes) to quantize the weights to 4-bits.
|
|
|
|
```python
|
|
# pip install -U flash-attn --no-build-isolation
|
|
import torch
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
|
|
quantization_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_compute_dtype=torch.bfloat16,
|
|
bnb_4bit_quant_type="nf4",
|
|
bnb_4bit_use_double_quant=True,
|
|
)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"HuggingFaceTB/SmolLM3-3B",
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
quantization_config=quantization_config,
|
|
attn_implementation="flash_attention_2"
|
|
)
|
|
|
|
inputs = tokenizer("Gravity is the force", return_tensors="pt").to("cuda")
|
|
outputs = model.generate(**inputs, max_new_tokens=100)
|
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
```
|
|
|
|
|
|
## Notes
|
|
|
|
- Ensure your Transformers library version is up-to-date. SmolLM3 requires Transformers>=4.53.0 for full support.
|
|
|
|
## SmolLM3Config
|
|
|
|
[[autodoc]] SmolLM3Config
|
|
|
|
## SmolLM3Model
|
|
|
|
[[autodoc]] SmolLM3Model
|
|
- forward
|
|
|
|
## SmolLM3ForCausalLM
|
|
|
|
[[autodoc]] SmolLM3ForCausalLM
|
|
- forward
|
|
|
|
## SmolLM3ForSequenceClassification
|
|
|
|
[[autodoc]] SmolLM3ForSequenceClassification
|
|
- forward
|
|
|
|
## SmolLM3ForTokenClassification
|
|
|
|
[[autodoc]] SmolLM3ForTokenClassification
|
|
- forward
|
|
|
|
## SmolLM3ForQuestionAnswering
|
|
|
|
[[autodoc]] SmolLM3ForQuestionAnswering
|
|
- forward
|