transformers/docs/source/en/model_doc/blip.md
DongKyu Kang 2166b6b4ff
Some checks failed
Self-hosted runner (benchmark) / Benchmark (aws-g5-4xlarge-cache) (push) Has been cancelled
Build documentation / build (push) Has been cancelled
Slow tests on important models (on Push - A10) / Get all modified files (push) Has been cancelled
Secret Leaks / trufflehog (push) Has been cancelled
Update Transformers metadata / build_and_package (push) Has been cancelled
Slow tests on important models (on Push - A10) / Slow & FA2 tests (push) Has been cancelled
Update blip model card (#38513)
* Update docs/source/en/model_doc/blip.md

* fix(docs/source/en/model_doc/blip.md): fix redundent typo error

* fix (docs/source/en/model_doc/blip.md): modify of review contents

* fix(docs/source/en/model_doc/blip.md): modify code block

* Update blip.md

---------

Co-authored-by: devkade <mouseku@moana-master>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-06-20 13:46:19 -07:00

5.1 KiB

PyTorch TensorFlow

BLIP

BLIP (Bootstrapped Language-Image Pretraining) is a vision-language pretraining (VLP) framework designed for both understanding and generation tasks. Most existing pretrained models are only good at one or the other. It uses a captioner to generate captions and a filter to remove the noisy captions. This increases training data quality and more effectively uses the messy web data.

You can find all the original BLIP checkpoints under the BLIP collection.

Tip

This model was contributed by ybelkada.

Click on the BLIP models in the right sidebar for more examples of how to apply BLIP to different vision language tasks.

The example below demonstrates how to visual question answering with [Pipeline] or the [AutoModel] class.

import torch
from transformers import pipeline

pipeline = pipeline(
    task="visual-question-answering",
    model="Salesforce/blip-vqa-base",
    torch_dtype=torch.float16,
    device=0
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
pipeline(question="What is the weather in this image?", image=url)
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForVisualQuestionAnswering

processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
model = AutoModelForVisualQuestionAnswering.from_pretrained(
    "Salesforce/blip-vqa-base", 
    torch_dtype=torch.float16,
    device_map="auto"
)

url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)

question = "What is the weather in this image?"
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda", torch.float16)

output = model.generate(**inputs)
processor.batch_decode(output, skip_special_tokens=True)[0]

Resources

Refer to this notebook to learn how to fine-tune BLIP for image captioning on a custom dataset.

BlipConfig

autodoc BlipConfig - from_text_vision_configs

BlipTextConfig

autodoc BlipTextConfig

BlipVisionConfig

autodoc BlipVisionConfig

BlipProcessor

autodoc BlipProcessor

BlipImageProcessor

autodoc BlipImageProcessor - preprocess

BlipImageProcessorFast

autodoc BlipImageProcessorFast - preprocess

BlipModel

BlipModel is going to be deprecated in future versions, please use BlipForConditionalGeneration, BlipForImageTextRetrieval or BlipForQuestionAnswering depending on your usecase.

autodoc BlipModel - forward - get_text_features - get_image_features

BlipTextModel

autodoc BlipTextModel - forward

BlipTextLMHeadModel

autodoc BlipTextLMHeadModel

  • forward

BlipVisionModel

autodoc BlipVisionModel - forward

BlipForConditionalGeneration

autodoc BlipForConditionalGeneration - forward

BlipForImageTextRetrieval

autodoc BlipForImageTextRetrieval - forward

BlipForQuestionAnswering

autodoc BlipForQuestionAnswering - forward

TFBlipModel

autodoc TFBlipModel - call - get_text_features - get_image_features

TFBlipTextModel

autodoc TFBlipTextModel - call

TFBlipTextLMHeadModel

autodoc TFBlipTextLMHeadModel

  • forward

TFBlipVisionModel

autodoc TFBlipVisionModel - call

TFBlipForConditionalGeneration

autodoc TFBlipForConditionalGeneration - call

TFBlipForImageTextRetrieval

autodoc TFBlipForImageTextRetrieval - call

TFBlipForQuestionAnswering

autodoc TFBlipForQuestionAnswering - call