transformers/docs/source/en/model_doc/clip.md
Pavel Iakubovskii 1c37e8c1a6
Add sdpa and FA2 for CLIP (#31940)
* Squashed commit of the following:

commit 102842cd477219b9f9bcb23a0bca3a8b92bd732f
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Fri Jul 12 18:23:52 2024 +0000

    Add model-specific sdpa tests

commit 60e4c88581abf89ec098da84ed8e92aa904c997d
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Fri Jul 12 18:20:53 2024 +0000

    Add fallback to eager (expensive operation)

commit c29033d30e7ffde4327e8a15cbbc6bee37546f80
Author: Pavel Iakubovskii <qubvel@gmail.com>
Date:   Thu Jul 11 17:09:55 2024 +0000

    Fix attn_implementation propagation

commit 783aed05f0f38cb2f99e758f81db6838ac55b9f8
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:05:27 2024 +0530

    style

commit e77e703ca75d00447cda277eca6b886cd32bddc0
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:04:57 2024 +0530

    add comment to explain why I had to touch forbidden codebase.

commit ab9d8849758e7773a31778ccba71588d18552623
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 09:03:02 2024 +0530

    fix: flax attribute access.

commit c570fc0abf9d1bd58c291aae3c7e384f995996d2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 08:23:54 2024 +0530

    fix tensorflow attribute name.

commit 32c812871cfdb268d8a6e3e2c61c5c925c8ed47e
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 07:57:10 2024 +0530

    fix attribute access.

commit 4f41a0138b6c417aed9c9332278f8bcd979cb7c2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Sat May 25 07:44:02 2024 +0530

    _from_config.

commit 35aed64ff602422adcf41d7f677a0a24bd9eccae
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 18:46:52 2024 +0530

    propagation of attn_implementation.

commit 4c25c19845438b1dc1d35a5adf9436151c8c5940
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:24:36 2024 +0530

    style again

commit 5f7dc5c5015c0f8116408f737e8c318d1802c80c
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:19:05 2024 +0530

    use from_config.

commit b70c409956d0359fa6ae5372275d2a20ba7e3389
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 24 09:13:43 2024 +0530

    quality

commit a7b63beff53d0fc754c6564e2a7b51731ddee49d
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 14:35:10 2024 +0200

    add benchmark numbers

commit 455b0eaea50862b8458c8f422b60fe60ae40fdcb
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:50:16 2024 +0200

    Revert "reflect feedback more"

    This reverts commit dc123e71ef.

commit ca674829d28787349c2a9593a14e0f1d41f04ea4
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:50:05 2024 +0200

    Revert "fix"

    This reverts commit 37a1cb35b8.

commit fab2dd8576c099eb1a3464958cb206a664d28247
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:47:46 2024 +0200

    fix

commit fbc6ae50fd6f2d36294d31e191761631b701d696
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 10 13:38:30 2024 +0200

    reflect feedback more

commit 87245bb020b2d60a89afe318a951df0159404fc9
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 08:54:34 2024 +0530

    fixes

commit 1057cc26390ee839251e7f8b3326c4207595fb23
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:49:03 2024 +0530

    don't explicit set attn_implementation in tests

commit e33f75916fc8a99f516b1cf449dbbe9d3aabda81
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:43:54 2024 +0530

    explicitly override attn_implementation in the towers.

commit 4cf41cb1bc885c39df7cb8f2a0694ebf23299235
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:38:42 2024 +0530

    import in one-line.

commit f2cc447ae9e74ccfacb448140cdf88259d4afc8c
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri May 3 07:34:58 2024 +0530

    move sdpa mention to usage tips.

commit 92884766c64dbb456926a3a84dd427be1349fa95
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 29 10:58:26 2024 +0530

    fix: memory allocation problem.

commit d7ffbbfe12f7750b7d0a361420f35c13e0ea787d
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 29 09:56:59 2024 +0530

    fix-copies

commit 8dfc3731cedd02e36acd3fe56bb2e6d61efd25d8
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Fri Apr 26 20:16:12 2024 +0530

    address arthur's comments.

commit d2ed7b4ce4ff15ae9aa4d3d0500f1544e3dcd9e9
Author: Sayak Paul <spsayakpaul@gmail.com>
Date:   Fri Apr 26 20:08:15 2024 +0530

    Apply suggestions from code review

    Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

commit 46e04361f37ded5c522ff05e9f725b9f82dce40e
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:55:27 2024 +0530

    add to docs.

commit 831629158ad40d34d8983f209afb2740ba041af2
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:33:10 2024 +0530

    styling.g

commit d263a119c77314250f4b4c8469caf42559197f22
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Wed Apr 24 09:15:20 2024 +0530

    up

commit d44f9d3d7633d4c241a737a1bc317f791f6aedb3
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 18:40:42 2024 +0530

    handle causal and attention mask

commit 122f1d60153df6666b634a94e38d073f3f260926
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 15:18:21 2024 +0530

    test fixes.

commit 4382d8cff6fa1dee5dbcf0d06b3e2841231e36f5
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 09:39:25 2024 +0530

    fix: scaling inside sdpa.

commit 0f629989efc48b7315cf19405a81e02955efe7e5
Author: Sayak Paul <spsayakpaul@gmail.com>
Date:   Tue Apr 23 08:14:58 2024 +0530

    Update src/transformers/models/clip/modeling_clip.py

    Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

commit 14367316877dc27ea40f767ad1aee38bbc97e4ce
Author: sayakpaul <spsayakpaul@gmail.com>
Date:   Mon Apr 22 16:21:36 2024 +0530

    add: sdpa support to clip.

* Remove fallback for empty attention mask (expensive operation)

* Fix typing in copies

* Add flash attention

* Add flash attention tests

* List CLIP in FA docs

* Fix embeddings attributes and tf

* [run-slow] clip

* Update clip documentation

* Remove commented code, skip compile dynamic for CLIPModel

* Fix doc

* Fix doc 2

* Remove double transpose

* Add torch version check for contiguous()

* Add comment to test mixin

* Fix copies

* Add comment for mask

* Update docs

* [run-slow] clip
2024-07-18 10:30:37 +05:30

344 lines
15 KiB
Markdown

<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# CLIP
## Overview
The CLIP model was proposed in [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020) by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. CLIP
(Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs. It can be
instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing
for the task, similarly to the zero-shot capabilities of GPT-2 and 3.
The abstract from the paper is the following:
*State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This
restricted form of supervision limits their generality and usability since additional labeled data is needed to specify
any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a
much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes
with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400
million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference
learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study
the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks
such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The
model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need
for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot
without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained
model weights at this https URL.*
This model was contributed by [valhalla](https://huggingface.co/valhalla). The original code can be found [here](https://github.com/openai/CLIP).
## Usage tips and example
CLIP is a multi-modal vision and language model. It can be used for image-text similarity and for zero-shot image
classification. CLIP uses a ViT like transformer to get visual features and a causal language model to get the text
features. Both the text and visual features are then projected to a latent space with identical dimension. The dot
product between the projected image and text features is then used as a similar score.
To feed images to the Transformer encoder, each image is split into a sequence of fixed-size non-overlapping patches,
which are then linearly embedded. A [CLS] token is added to serve as representation of an entire image. The authors
also add absolute position embeddings, and feed the resulting sequence of vectors to a standard Transformer encoder.
The [`CLIPImageProcessor`] can be used to resize (or rescale) and normalize images for the model.
The [`CLIPTokenizer`] is used to encode the text. The [`CLIPProcessor`] wraps
[`CLIPImageProcessor`] and [`CLIPTokenizer`] into a single instance to both
encode the text and prepare the images. The following example shows how to get the image-text similarity scores using
[`CLIPProcessor`] and [`CLIPModel`].
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, CLIPModel
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```
### Combining CLIP and Flash Attention 2
First, make sure to install the latest version of Flash Attention 2.
```bash
pip install -U flash-attn --no-build-isolation
```
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16`)
<Tip warning={true}>
For small batch sizes, you might notice a slowdown in your model when using flash attention. Refer to the section [Expected speedups with Flash Attention and SDPA](#Expected-speedups-with-Flash-Attention-and-SDPA) below and select an appropriate attention implementation.
</Tip>
To load and run a model using Flash Attention 2, refer to the snippet below:
```python
>>> import torch
>>> import requests
>>> from PIL import Image
>>> from transformers import CLIPProcessor, CLIPModel
>>> device = "cuda"
>>> torch_dtype = torch.float16
>>> model = CLIPModel.from_pretrained(
... "openai/clip-vit-base-patch32",
... attn_implementation="flash_attention_2",
... device_map=device,
... torch_dtype=torch_dtype,
... )
>>> processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
>>> inputs.to(device)
>>> with torch.no_grad():
... with torch.autocast(device):
... outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
>>> print(probs)
tensor([[0.9946, 0.0052]], device='cuda:0', dtype=torch.float16)
```
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```python
from transformers import CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", torch_dtype=torch.float16, attn_implementation="sdpa")
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
### Expected speedups with Flash Attention and SDPA
On a local benchmark (NVIDIA A10G, PyTorch 2.3.1+cu121) with `float16`, we saw the following speedups during inference for `"openai/clip-vit-large-patch14"` checkpoint ([code](https://gist.github.com/qubvel/ac691a54e54f9fae8144275f866a7ff8)):
#### CLIPTextModel
| Num text labels | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
|------------------:|-----------------:|---------------:|--------------:|----------------:|---------------:|
| 4 | 0.009 | 0.012 | 0.737 | 0.007 | 1.269 |
| 16 | 0.009 | 0.014 | 0.659 | 0.008 | 1.187 |
| 32 | 0.018 | 0.021 | 0.862 | 0.016 | 1.142 |
| 64 | 0.034 | 0.034 | 1.001 | 0.03 | 1.163 |
| 128 | 0.063 | 0.058 | 1.09 | 0.054 | 1.174 |
![clip_text_model_viz_3](https://github.com/user-attachments/assets/e9826b43-4e66-4f4c-952b-af4d90bd38eb)
#### CLIPVisionModel
| Image batch size | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
|-------------------:|-----------------:|---------------:|--------------:|----------------:|---------------:|
| 1 | 0.016 | 0.013 | 1.247 | 0.012 | 1.318 |
| 4 | 0.025 | 0.021 | 1.198 | 0.021 | 1.202 |
| 16 | 0.093 | 0.075 | 1.234 | 0.075 | 1.24 |
| 32 | 0.181 | 0.147 | 1.237 | 0.146 | 1.241 |
![clip_image_model_viz_3](https://github.com/user-attachments/assets/50a36206-e3b9-4adc-ac8e-926b8b071d63)
#### CLIPModel
| Image batch size | Num text labels | Eager (s/iter) | FA2 (s/iter) | FA2 speedup | SDPA (s/iter) | SDPA speedup |
|-------------------:|------------------:|-----------------:|---------------:|--------------:|----------------:|---------------:|
| 1 | 4 | 0.025 | 0.026 | 0.954 | 0.02 | 1.217 |
| 1 | 16 | 0.026 | 0.028 | 0.918 | 0.02 | 1.287 |
| 1 | 64 | 0.042 | 0.046 | 0.906 | 0.036 | 1.167 |
| 4 | 4 | 0.028 | 0.033 | 0.849 | 0.024 | 1.189 |
| 4 | 16 | 0.034 | 0.035 | 0.955 | 0.029 | 1.169 |
| 4 | 64 | 0.059 | 0.055 | 1.072 | 0.05 | 1.179 |
| 16 | 4 | 0.096 | 0.088 | 1.091 | 0.078 | 1.234 |
| 16 | 16 | 0.102 | 0.09 | 1.129 | 0.083 | 1.224 |
| 16 | 64 | 0.127 | 0.11 | 1.157 | 0.105 | 1.218 |
| 32 | 4 | 0.185 | 0.159 | 1.157 | 0.149 | 1.238 |
| 32 | 16 | 0.19 | 0.162 | 1.177 | 0.154 | 1.233 |
| 32 | 64 | 0.216 | 0.181 | 1.19 | 0.176 | 1.228 |
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with CLIP.
- [Fine tuning CLIP with Remote Sensing (Satellite) images and captions](https://huggingface.co/blog/fine-tune-clip-rsicd), a blog post about how to fine-tune CLIP with [RSICD dataset](https://github.com/201528014227051/RSICD_optimal) and comparison of performance changes due to data augmentation.
- This [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/contrastive-image-text) shows how to train a CLIP-like vision-text dual encoder model using a pre-trained vision and text encoder using [COCO dataset](https://cocodataset.org/#home).
<PipelineTag pipeline="image-to-text"/>
- A [notebook](https://colab.research.google.com/drive/1tuoAC5F4sC7qid56Z0ap-stR3rwdk0ZV?usp=sharing) on how to use a pretrained CLIP for inference with beam search for image captioning. 🌎
**Image retrieval**
- A [notebook](https://colab.research.google.com/drive/1bLVwVKpAndpEDHqjzxVPr_9nGrSbuOQd?usp=sharing) on image retrieval using pretrained CLIP and computing MRR(Mean Reciprocal Rank) score. 🌎
- A [notebook](https://colab.research.google.com/github/deep-diver/image_search_with_natural_language/blob/main/notebooks/Image_Search_CLIP.ipynb) on image retrieval and showing the similarity score. 🌎
- A [notebook](https://colab.research.google.com/drive/1xO-wC_m_GNzgjIBQ4a4znvQkvDoZJvH4?usp=sharing) on how to map images and texts to the same vector space using Multilingual CLIP. 🌎
- A [notebook](https://colab.research.google.com/github/vivien000/clip-demo/blob/master/clip.ipynb#scrollTo=uzdFhRGqiWkR) on how to run CLIP on semantic image search using [Unsplash](https://unsplash.com) and [TMDB](https://www.themoviedb.org/) datasets. 🌎
**Explainability**
- A [notebook](https://colab.research.google.com/github/hila-chefer/Transformer-MM-Explainability/blob/main/CLIP_explainability.ipynb) on how to visualize similarity between input token and image segment. 🌎
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we will review it.
The resource should ideally demonstrate something new instead of duplicating an existing resource.
## CLIPConfig
[[autodoc]] CLIPConfig
- from_text_vision_configs
## CLIPTextConfig
[[autodoc]] CLIPTextConfig
## CLIPVisionConfig
[[autodoc]] CLIPVisionConfig
## CLIPTokenizer
[[autodoc]] CLIPTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## CLIPTokenizerFast
[[autodoc]] CLIPTokenizerFast
## CLIPImageProcessor
[[autodoc]] CLIPImageProcessor
- preprocess
## CLIPFeatureExtractor
[[autodoc]] CLIPFeatureExtractor
## CLIPProcessor
[[autodoc]] CLIPProcessor
<frameworkcontent>
<pt>
## CLIPModel
[[autodoc]] CLIPModel
- forward
- get_text_features
- get_image_features
## CLIPTextModel
[[autodoc]] CLIPTextModel
- forward
## CLIPTextModelWithProjection
[[autodoc]] CLIPTextModelWithProjection
- forward
## CLIPVisionModelWithProjection
[[autodoc]] CLIPVisionModelWithProjection
- forward
## CLIPVisionModel
[[autodoc]] CLIPVisionModel
- forward
## CLIPForImageClassification
[[autodoc]] CLIPForImageClassification
- forward
</pt>
<tf>
## TFCLIPModel
[[autodoc]] TFCLIPModel
- call
- get_text_features
- get_image_features
## TFCLIPTextModel
[[autodoc]] TFCLIPTextModel
- call
## TFCLIPVisionModel
[[autodoc]] TFCLIPVisionModel
- call
</tf>
<jax>
## FlaxCLIPModel
[[autodoc]] FlaxCLIPModel
- __call__
- get_text_features
- get_image_features
## FlaxCLIPTextModel
[[autodoc]] FlaxCLIPTextModel
- __call__
## FlaxCLIPTextModelWithProjection
[[autodoc]] FlaxCLIPTextModelWithProjection
- __call__
## FlaxCLIPVisionModel
[[autodoc]] FlaxCLIPVisionModel
- __call__
</jax>
</frameworkcontent>