mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
389 lines
15 KiB
Python
389 lines
15 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Florence2 model."""
|
|
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
from transformers import (
|
|
AutoProcessor,
|
|
Florence2Config,
|
|
Florence2ForConditionalGeneration,
|
|
Florence2Model,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
)
|
|
from transformers.testing_utils import (
|
|
cleanup,
|
|
require_torch,
|
|
require_vision,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
else:
|
|
is_torch_greater_or_equal_than_2_0 = False
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class Florence2VisionText2TextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
num_channels=3,
|
|
image_size=8,
|
|
seq_length=13,
|
|
encoder_seq_length=18,
|
|
is_training=True,
|
|
vocab_size=99,
|
|
max_position_embeddings=64,
|
|
encoder_layers=1,
|
|
encoder_ffn_dim=8,
|
|
decoder_layers=1,
|
|
decoder_ffn_dim=8,
|
|
num_attention_heads=1,
|
|
d_model=8,
|
|
activation_function="gelu",
|
|
dropout=0.1,
|
|
eos_token_id=2,
|
|
bos_token_id=0,
|
|
pad_token_id=1,
|
|
depths=[1],
|
|
patch_size=[7],
|
|
patch_stride=[4],
|
|
patch_padding=[3],
|
|
patch_prenorm=[False],
|
|
embed_dim=[8],
|
|
num_heads=[1],
|
|
num_groups=[1],
|
|
window_size=12,
|
|
drop_path_rate=0.1,
|
|
projection_dim=8,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.seq_length = seq_length
|
|
self.encoder_seq_length = encoder_seq_length
|
|
self.is_training = is_training
|
|
self.num_hidden_layers = decoder_layers
|
|
self.hidden_size = d_model
|
|
|
|
# Language model configs
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.encoder_layers = encoder_layers
|
|
self.encoder_ffn_dim = encoder_ffn_dim
|
|
self.decoder_layers = decoder_layers
|
|
self.decoder_ffn_dim = decoder_ffn_dim
|
|
self.num_attention_heads = num_attention_heads
|
|
self.d_model = d_model
|
|
self.activation_function = activation_function
|
|
self.dropout = dropout
|
|
self.eos_token_id = eos_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
|
|
# Vision model configs
|
|
self.drop_path_rate = drop_path_rate
|
|
self.patch_size = patch_size
|
|
self.depths = depths
|
|
self.patch_stride = patch_stride
|
|
self.patch_padding = patch_padding
|
|
self.patch_prenorm = patch_prenorm
|
|
self.embed_dim = embed_dim
|
|
self.num_heads = num_heads
|
|
self.num_groups = num_groups
|
|
self.window_size = window_size
|
|
self.projection_dim = projection_dim
|
|
|
|
def get_config(self):
|
|
text_config = {
|
|
"model_type": "bart",
|
|
"vocab_size": self.vocab_size,
|
|
"max_position_embeddings": self.max_position_embeddings,
|
|
"encoder_layers": self.encoder_layers,
|
|
"encoder_ffn_dim": self.encoder_ffn_dim,
|
|
"encoder_attention_heads": self.num_attention_heads,
|
|
"decoder_layers": self.decoder_layers,
|
|
"decoder_ffn_dim": self.decoder_ffn_dim,
|
|
"decoder_attention_heads": self.num_attention_heads,
|
|
"d_model": self.d_model,
|
|
"activation_function": self.activation_function,
|
|
"dropout": self.dropout,
|
|
"attention_dropout": self.dropout,
|
|
"activation_dropout": self.dropout,
|
|
"eos_token_id": self.eos_token_id,
|
|
"bos_token_id": self.bos_token_id,
|
|
"pad_token_id": self.pad_token_id,
|
|
}
|
|
|
|
vision_config = {
|
|
"drop_path_rate": self.drop_path_rate,
|
|
"patch_size": self.patch_size,
|
|
"depths": self.depths,
|
|
"patch_stride": self.patch_stride,
|
|
"patch_padding": self.patch_padding,
|
|
"patch_prenorm": self.patch_prenorm,
|
|
"embed_dim": self.embed_dim,
|
|
"num_heads": self.num_heads,
|
|
"num_groups": self.num_groups,
|
|
"window_size": self.window_size,
|
|
"activation_function": self.activation_function,
|
|
"projection_dim": self.projection_dim,
|
|
}
|
|
|
|
return Florence2Config(text_config=text_config, vision_config=vision_config)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
self.num_channels,
|
|
self.image_size,
|
|
self.image_size,
|
|
]
|
|
)
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
|
|
3,
|
|
)
|
|
input_ids[:, -1] = self.eos_token_id
|
|
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"pixel_values": pixel_values,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
}
|
|
|
|
config = self.get_config()
|
|
return config, inputs_dict
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, inputs_dict = self.prepare_config_and_inputs()
|
|
return config, inputs_dict
|
|
|
|
def create_and_check_florence2_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask):
|
|
model = Florence2ForConditionalGeneration(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
|
logits = model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
pixel_values=pixel_values.to(torch.float16),
|
|
return_dict=True,
|
|
)["logits"]
|
|
self.parent.assertFalse(torch.isnan(logits).any().item())
|
|
|
|
@unittest.skip(
|
|
reason="This architecture (bart) has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245"
|
|
)
|
|
def test_load_save_without_tied_weights(self):
|
|
pass
|
|
|
|
|
|
@require_torch
|
|
class Florence2ForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `Florence2ForConditionalGeneration`.
|
|
"""
|
|
|
|
all_model_classes = (Florence2ForConditionalGeneration, Florence2Model) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"image-to-text": Florence2ForConditionalGeneration,
|
|
"image-text-to-text": Florence2ForConditionalGeneration,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
test_attention_outputs = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = Florence2VisionText2TextModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=Florence2Config, has_text_modality=False)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
def test_inputs_embeds(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
wte = model.get_input_embeddings()
|
|
inputs["inputs_embeds"] = wte(input_ids)
|
|
|
|
with torch.no_grad():
|
|
model(**inputs)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
# while some other models require pixel_values to be present
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
inputs_embeds = model.get_input_embeddings()(input_ids)
|
|
|
|
with torch.no_grad():
|
|
out_ids = model(input_ids=input_ids, **inputs)[0]
|
|
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
|
|
self.assertTrue(torch.allclose(out_embeds, out_ids))
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245"
|
|
)
|
|
def test_load_save_without_tied_weights(self):
|
|
pass
|
|
|
|
|
|
def prepare_img():
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg?download=true"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
return image
|
|
|
|
|
|
@require_vision
|
|
@require_torch
|
|
@slow
|
|
class Florence2ForConditionalGenerationIntegrationTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.model_name = "microsoft/Florence-2-base"
|
|
self.processor = AutoProcessor.from_pretrained(self.model_name)
|
|
|
|
self.image1 = Image.open(
|
|
requests.get(
|
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg?download=true",
|
|
stream=True,
|
|
).raw
|
|
)
|
|
self.image2 = Image.open(
|
|
requests.get(
|
|
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
|
|
stream=True,
|
|
).raw
|
|
)
|
|
|
|
def tearDown(self):
|
|
cleanup(torch_device, gc_collect=True)
|
|
|
|
def test_inference_base(self):
|
|
model = Florence2ForConditionalGeneration.from_pretrained(self.model_name, torch_dtype=torch.float16).to(
|
|
torch_device
|
|
)
|
|
|
|
prompt = "<DETAILED_CAPTION>"
|
|
inputs = self.processor(images=self.image1, text=prompt, return_tensors="pt")
|
|
inputs.to(device=torch_device, dtype=torch.float16)
|
|
|
|
EXPECTED_INPUT_IDS = [[0, 47066, 21700, 11, 4617, 99, 16, 2343, 11, 5, 2274, 4, 2]] # fmt: skip
|
|
self.assertTrue(inputs["input_ids"].tolist(), EXPECTED_INPUT_IDS)
|
|
|
|
predictions = model.generate(**inputs, max_new_tokens=100)
|
|
|
|
EXPECTED_PREDICTION_IDS = [[2, 0, 133, 2274, 924, 10, 912, 1203, 2828, 15, 5, 526, 9, 10, 2014, 11, 35910, 6, 188, 469, 412, 4, 20, 2014, 16, 9321, 19, 3413, 6, 3980, 6, 8, 19638, 6, 8, 89, 32, 82, 3051, 15, 5, 2767, 22609, 4, 20, 6360, 16, 7097, 11, 5, 3618, 4, 2]] # fmt: skip
|
|
self.assertTrue(predictions.tolist(), EXPECTED_PREDICTION_IDS)
|
|
|
|
generated_text = self.processor.batch_decode(predictions, skip_special_tokens=True)[0]
|
|
|
|
EXPECTED_GENERATED_TEXT = "The image shows a stop sign sitting on the side of a street in Chinatown, New York City. The street is lined with buildings, trees, and statues, and there are people walking on the footpath. The sky is visible in the background." # fmt: skip
|
|
self.assertEqual(generated_text, EXPECTED_GENERATED_TEXT)
|
|
|
|
def test_batch_inference_base(self):
|
|
model = Florence2ForConditionalGeneration.from_pretrained(
|
|
self.model_name, attn_implementation="eager", torch_dtype=torch.float16
|
|
).to(torch_device)
|
|
|
|
images = [self.image1, self.image2]
|
|
prompts = ["<CAPTION>", "<DETAILED_CAPTION>"]
|
|
inputs = self.processor(images=images, text=prompts, padding="longest", return_tensors="pt")
|
|
|
|
EXPECTED_INPUT_IDS = [
|
|
[0, 2264, 473, 5, 2274, 6190, 116, 2, 1, 1, 1, 1, 1],
|
|
[0, 47066, 21700, 11, 4617, 99, 16, 2343, 11, 5, 2274, 4, 2],
|
|
] # fmt: skip
|
|
self.assertTrue(inputs["input_ids"].tolist(), EXPECTED_INPUT_IDS)
|
|
|
|
inputs.to(device=torch_device, dtype=torch.float16)
|
|
print(inputs)
|
|
predictions = model.generate(**inputs, max_new_tokens=100)
|
|
|
|
EXPECTED_PREDICTION_IDS = [
|
|
[2, 0, 250, 912, 1203, 2828, 15, 5, 526, 9, 10, 2014, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
|
|
[2, 0, 133, 2274, 924, 10, 2272, 10685, 41537, 9181, 11, 760, 9, 10, 5718, 745, 19, 80, 6219, 4259, 6, 7501, 30, 3980, 8, 10, 699, 2440, 6360, 4, 2]
|
|
] # fmt: skip
|
|
self.assertTrue(predictions.tolist(), EXPECTED_PREDICTION_IDS)
|
|
|
|
generated_texts = self.processor.batch_decode(predictions, skip_special_tokens=True)
|
|
|
|
EXPECTED_GENERATED_TEXTS = [
|
|
"A stop sign sitting on the side of a street.",
|
|
"The image shows a green Volkswagen Beetle parked in front of a yellow building with two brown doors, surrounded by trees and a clear blue sky.",
|
|
] # fmt: skip
|
|
self.assertEqual(generated_texts, EXPECTED_GENERATED_TEXTS)
|