# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Testing suite for the PyTorch Florence2 model.""" import unittest import requests from transformers import ( AutoProcessor, Florence2Config, Florence2ForConditionalGeneration, Florence2Model, is_torch_available, is_vision_available, ) from transformers.testing_utils import ( cleanup, require_torch, require_vision, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor if is_torch_available(): import torch else: is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image class Florence2VisionText2TextModelTester: def __init__( self, parent, batch_size=13, num_channels=3, image_size=8, seq_length=13, encoder_seq_length=18, is_training=True, vocab_size=99, max_position_embeddings=64, encoder_layers=1, encoder_ffn_dim=8, decoder_layers=1, decoder_ffn_dim=8, num_attention_heads=1, d_model=8, activation_function="gelu", dropout=0.1, eos_token_id=2, bos_token_id=0, pad_token_id=1, depths=[1], patch_size=[7], patch_stride=[4], patch_padding=[3], patch_prenorm=[False], embed_dim=[8], num_heads=[1], num_groups=[1], window_size=12, drop_path_rate=0.1, projection_dim=8, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.seq_length = seq_length self.encoder_seq_length = encoder_seq_length self.is_training = is_training self.num_hidden_layers = decoder_layers self.hidden_size = d_model # Language model configs self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.encoder_layers = encoder_layers self.encoder_ffn_dim = encoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.num_attention_heads = num_attention_heads self.d_model = d_model self.activation_function = activation_function self.dropout = dropout self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id # Vision model configs self.drop_path_rate = drop_path_rate self.patch_size = patch_size self.depths = depths self.patch_stride = patch_stride self.patch_padding = patch_padding self.patch_prenorm = patch_prenorm self.embed_dim = embed_dim self.num_heads = num_heads self.num_groups = num_groups self.window_size = window_size self.projection_dim = projection_dim def get_config(self): text_config = { "model_type": "bart", "vocab_size": self.vocab_size, "max_position_embeddings": self.max_position_embeddings, "encoder_layers": self.encoder_layers, "encoder_ffn_dim": self.encoder_ffn_dim, "encoder_attention_heads": self.num_attention_heads, "decoder_layers": self.decoder_layers, "decoder_ffn_dim": self.decoder_ffn_dim, "decoder_attention_heads": self.num_attention_heads, "d_model": self.d_model, "activation_function": self.activation_function, "dropout": self.dropout, "attention_dropout": self.dropout, "activation_dropout": self.dropout, "eos_token_id": self.eos_token_id, "bos_token_id": self.bos_token_id, "pad_token_id": self.pad_token_id, } vision_config = { "drop_path_rate": self.drop_path_rate, "patch_size": self.patch_size, "depths": self.depths, "patch_stride": self.patch_stride, "patch_padding": self.patch_padding, "patch_prenorm": self.patch_prenorm, "embed_dim": self.embed_dim, "num_heads": self.num_heads, "num_groups": self.num_groups, "window_size": self.window_size, "activation_function": self.activation_function, "projection_dim": self.projection_dim, } return Florence2Config(text_config=text_config, vision_config=vision_config) def prepare_config_and_inputs(self): pixel_values = floats_tensor( [ self.batch_size, self.num_channels, self.image_size, self.image_size, ] ) input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) inputs_dict = { "input_ids": input_ids, "pixel_values": pixel_values, "decoder_input_ids": decoder_input_ids, } config = self.get_config() return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_florence2_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask): model = Florence2ForConditionalGeneration(config=config) model.to(torch_device) model.eval() with torch.autocast(device_type="cuda", dtype=torch.float16): logits = model( input_ids=input_ids, attention_mask=attention_mask, pixel_values=pixel_values.to(torch.float16), return_dict=True, )["logits"] self.parent.assertFalse(torch.isnan(logits).any().item()) @unittest.skip( reason="This architecture (bart) has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245" ) def test_load_save_without_tied_weights(self): pass @require_torch class Florence2ForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): """ Model tester for `Florence2ForConditionalGeneration`. """ all_model_classes = (Florence2ForConditionalGeneration, Florence2Model) if is_torch_available() else () pipeline_model_mapping = ( { "image-to-text": Florence2ForConditionalGeneration, "image-text-to-text": Florence2ForConditionalGeneration, } if is_torch_available() else {} ) test_pruning = False test_head_masking = False test_attention_outputs = False _is_composite = True def setUp(self): self.model_tester = Florence2VisionText2TextModelTester(self) self.config_tester = ConfigTester(self, config_class=Florence2Config, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() # overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) input_ids = inputs["input_ids"] del inputs["input_ids"] del inputs["pixel_values"] wte = model.get_input_embeddings() inputs["inputs_embeds"] = wte(input_ids) with torch.no_grad(): model(**inputs) # overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs # while some other models require pixel_values to be present def test_inputs_embeds_matches_input_ids(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) input_ids = inputs["input_ids"] del inputs["input_ids"] del inputs["pixel_values"] inputs_embeds = model.get_input_embeddings()(input_ids) with torch.no_grad(): out_ids = model(input_ids=input_ids, **inputs)[0] out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0] self.assertTrue(torch.allclose(out_embeds, out_ids)) @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip( reason="This architecture has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245" ) def test_load_save_without_tied_weights(self): pass def prepare_img(): url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg?download=true" image = Image.open(requests.get(url, stream=True).raw) return image @require_vision @require_torch @slow class Florence2ForConditionalGenerationIntegrationTest(unittest.TestCase): def setUp(self): self.model_name = "microsoft/Florence-2-base" self.processor = AutoProcessor.from_pretrained(self.model_name) self.image1 = Image.open( requests.get( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg?download=true", stream=True, ).raw ) self.image2 = Image.open( requests.get( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true", stream=True, ).raw ) def tearDown(self): cleanup(torch_device, gc_collect=True) def test_inference_base(self): model = Florence2ForConditionalGeneration.from_pretrained(self.model_name, torch_dtype=torch.float16).to( torch_device ) prompt = "" inputs = self.processor(images=self.image1, text=prompt, return_tensors="pt") inputs.to(device=torch_device, dtype=torch.float16) EXPECTED_INPUT_IDS = [[0, 47066, 21700, 11, 4617, 99, 16, 2343, 11, 5, 2274, 4, 2]] # fmt: skip self.assertTrue(inputs["input_ids"].tolist(), EXPECTED_INPUT_IDS) predictions = model.generate(**inputs, max_new_tokens=100) EXPECTED_PREDICTION_IDS = [[2, 0, 133, 2274, 924, 10, 912, 1203, 2828, 15, 5, 526, 9, 10, 2014, 11, 35910, 6, 188, 469, 412, 4, 20, 2014, 16, 9321, 19, 3413, 6, 3980, 6, 8, 19638, 6, 8, 89, 32, 82, 3051, 15, 5, 2767, 22609, 4, 20, 6360, 16, 7097, 11, 5, 3618, 4, 2]] # fmt: skip self.assertTrue(predictions.tolist(), EXPECTED_PREDICTION_IDS) generated_text = self.processor.batch_decode(predictions, skip_special_tokens=True)[0] EXPECTED_GENERATED_TEXT = "The image shows a stop sign sitting on the side of a street in Chinatown, New York City. The street is lined with buildings, trees, and statues, and there are people walking on the footpath. The sky is visible in the background." # fmt: skip self.assertEqual(generated_text, EXPECTED_GENERATED_TEXT) def test_batch_inference_base(self): model = Florence2ForConditionalGeneration.from_pretrained( self.model_name, attn_implementation="eager", torch_dtype=torch.float16 ).to(torch_device) images = [self.image1, self.image2] prompts = ["", ""] inputs = self.processor(images=images, text=prompts, padding="longest", return_tensors="pt") EXPECTED_INPUT_IDS = [ [0, 2264, 473, 5, 2274, 6190, 116, 2, 1, 1, 1, 1, 1], [0, 47066, 21700, 11, 4617, 99, 16, 2343, 11, 5, 2274, 4, 2], ] # fmt: skip self.assertTrue(inputs["input_ids"].tolist(), EXPECTED_INPUT_IDS) inputs.to(device=torch_device, dtype=torch.float16) print(inputs) predictions = model.generate(**inputs, max_new_tokens=100) EXPECTED_PREDICTION_IDS = [ [2, 0, 250, 912, 1203, 2828, 15, 5, 526, 9, 10, 2014, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 0, 133, 2274, 924, 10, 2272, 10685, 41537, 9181, 11, 760, 9, 10, 5718, 745, 19, 80, 6219, 4259, 6, 7501, 30, 3980, 8, 10, 699, 2440, 6360, 4, 2] ] # fmt: skip self.assertTrue(predictions.tolist(), EXPECTED_PREDICTION_IDS) generated_texts = self.processor.batch_decode(predictions, skip_special_tokens=True) EXPECTED_GENERATED_TEXTS = [ "A stop sign sitting on the side of a street.", "The image shows a green Volkswagen Beetle parked in front of a yellow building with two brown doors, surrounded by trees and a clear blue sky.", ] # fmt: skip self.assertEqual(generated_texts, EXPECTED_GENERATED_TEXTS)